DOI QR코드

DOI QR Code

Validation and Recommendation of Methods to Measure Biogas Production Potential of Animal Manure

  • Pham, C.H. (Ministry of Agriculture and Rural Development, National Institute of Animal Sciences) ;
  • Triolo, J.M. (University of Southern Denmark, Faculty of Engineering, Institute of Chemical Engineering, Bio- and Environmental Engineering) ;
  • Cu, T.T.T. (Hanoi University of Agriculture, Faculty of Animal Science and Aquaculture) ;
  • Pedersen, L. (University of Southern Denmark, Faculty of Engineering, Institute of Chemical Engineering, Bio- and Environmental Engineering) ;
  • Sommer, S.G. (University of Southern Denmark, Faculty of Engineering, Institute of Chemical Engineering, Bio- and Environmental Engineering)
  • Received : 2012.11.01
  • Accepted : 2013.01.14
  • Published : 2013.06.01

Abstract

In developing countries, biogas energy production is seen as a technology that can provide clean energy in poor regions and reduce pollution caused by animal manure. Laboratories in these countries have little access to advanced gas measuring equipment, which may limit research aimed at improving local adapted biogas production. They may also be unable to produce valid estimates of an international standard that can be used for articles published in international peer-reviewed science journals. This study tested and validated methods for measuring total biogas and methane ($CH_4$) production using batch fermentation and for characterizing the biomass. The biochemical methane potential (BMP) ($CH_4$ NL $kg^{-1}$ VS) of pig manure, cow manure and cellulose determined with the Moller and VDI methods was not significantly different in this test (p>0.05). The biodegradability using a ratio of BMP and theoretical BMP (TBMP) was slightly higher using the Hansen method, but differences were not significant. Degradation rate assessed by methane formation rate showed wide variation within the batch method tested. The first-order kinetics constant k for the cumulative methane production curve was highest when two animal manures were fermented using the VDI 4630 method, indicating that this method was able to reach steady conditions in a shorter time, reducing fermentation duration. In precision tests, the repeatability of the relative standard deviation (RSDr) for all batch methods was very low (4.8 to 8.1%), while the reproducibility of the relative standard deviation (RSDR) varied widely, from 7.3 to 19.8%. In determination of biomethane concentration, the values obtained using the liquid replacement method (LRM) were comparable to those obtained using gas chromatography (GC). This indicates that the LRM method could be used to determine biomethane concentration in biogas in laboratories with limited access to GC.

Keywords

References

  1. Abu-Dahrieh, J., A. Orozco, E. Groom and D. Rooney. 2011. Batch and continuous biogas production from grass silage liquor. Bioresour. Technol. 102:10922-10928. https://doi.org/10.1016/j.biortech.2011.09.072
  2. Angelidaki, I. and B. K. Ahring. 1994. Anaerobic thermophilic digestion of manure at different ammonia loads: effect of temperature. Water Res. 28:727-731. https://doi.org/10.1016/0043-1354(94)90153-8
  3. Angelidaki, I., M. Alves, D. Bolzonella, I. Borzacconi, J. L. Campos, A.J. Guwy, S. Kalyuzhnyi, P. Jenicek and J. B. van Lier. 2009. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci. Technol. 59:927-934. https://doi.org/10.2166/wst.2009.040
  4. APHA 2005. Standard Methods for the Examination of Water and Wastewater (21st ed.). Washington, DC: American Public Health Association.
  5. Bhattacharya, S. C. and C. Jana. 2009. Renewable energy in India: historical developments and prospects. Energy 34:981-991. https://doi.org/10.1016/j.energy.2008.10.017
  6. Bouwman, A. F., K. K. Goldewijk, K. W. Van der Hoek, A. H.W. Beusen, D. P. Van Vuuren, J. Willems, M. C. Rufino and E. Stehfest. 2012. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900-2050 period. Proc. Natl. Acad. Sci. USA.
  7. Chen, Y., J. J. Cheng and K. S. Creamer. 2008. Inhibition of anaerobic digestion process: a review. Bioresour. Technol. 99:4044-4064. https://doi.org/10.1016/j.biortech.2007.01.057
  8. Cu, T. T. T., H. C. Pham, T. H. Le, V. C. Nguyen, X. A. Le, X. T. Nguyen and S. G. Sommer. 2012. Manure management practices on biogas and non-biogas pig farms in developing countries - using livestock farms in Vietnam as an example. J. Clean Prod. 27:64-71. https://doi.org/10.1016/j.jclepro.2012.01.006
  9. Davidson, E. A. 2009. The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nat. Geosci. 2:659-662. https://doi.org/10.1038/ngeo608
  10. Demirer, G. N., M. Duran, T. H. Ergüder, E. Guven, O. Ugurlu, and U. Tezel. 2000. Anaerobic treatability and biogas production potential studies of different agro-industrial wastewaters in Turkey. Biodegradation 11:401-405. https://doi.org/10.1023/A:1011659705369
  11. Godfray, H. C., J. R. Beddington, I. R. Crute, L. Haddad, D. Lawrence, J. F. Muir, J. Pretty, S. Robinson, S. M. Thomas and C. Toulmin. 2010. Food security: The challenge of feeding 9 billion people. Science 327:812-818. https://doi.org/10.1126/science.1185383
  12. Guwy, A. J. 2004. Equipment used for testing anaerobic biodegradability and activity. Rev. Environ. Sci. Biotechnol. 3:131-139. https://doi.org/10.1007/s11157-004-1290-0
  13. Hansen, T. L., J. E. Schmidt, I. Angelidaki, E. Marca, J. C. Jansen, H. Mosbæk and T. H. Christensen. 2004. Method for determination of methane potentials of solid organic waste. Waste Manag. 24:393-400. https://doi.org/10.1016/j.wasman.2003.09.009
  14. Hansen, T. L., S. G. Sommer, S. Gabriel and T. H. Christensen, 2006. Methane production during storage of anaerobically digested municipal organic waste. J. Environ. Qual. 35:830-836. https://doi.org/10.2134/jeq2005.0239
  15. Jiang, X., S. G. Sommer and K. V. Christensen. 2011. A review of the biogas industry in China. Energy Policy 39:6073-6081. https://doi.org/10.1016/j.enpol.2011.07.007
  16. Kiilholma, J. K. 2009. Hygienic Aspects of Effluent Use from Small-Scale Biogas Digesters in Northern Vietnam. Master's thesis, University of Copenhagen, Denmark.
  17. Lahav, O., B. E. Morgan and R. E. Loewenthal. 2002. Rapid, simple and accurate method for measurement of VFA and carbonate alkalinity in anaerobic reactors. Environ. Sci. Technol. 36:2736-2741. https://doi.org/10.1021/es011169v
  18. Møller, H. B., S. G. Sommer and B. K. Ahring. 2004. Methane productivity of manure, straw and solid fractions of manure. Biomass Bioenergy 26:485-495. https://doi.org/10.1016/j.biombioe.2003.08.008
  19. Raposo, F., C. J. Banks, I. Siegert, S. Heaven and R. Borja. 2006. Influence of inoculum to substrate ratio on the biochemical methane potential of maize in batch tests. Process Biochem. 41:1444-1450. https://doi.org/10.1016/j.procbio.2006.01.012
  20. Raposo, F., V. Fernandez-Cegri, M. A. De la Rubia, R. Borja, F. Beline, C. Cavinato, G. Demirer, B. Fernández, M. Fernandez-Polanco, J. C. Frigon, R. Ganesh, P. Kaparaju, J. Koubova, R. Mendez, G. Menin, A. Peene, P. Scherer, M. Torrijos, H. Uellendahl, I. Wierinck and V. de Wilde. 2011. Biochemical methane potential (BMP) of solid organic substrates: evaluation of anaerobic biodegradability using data from an international inter-laboratory study. J. Chem. Technol. Biotechnol. 86:1088-1098. https://doi.org/10.1002/jctb.2622
  21. Rozzi, A. and E. Remigi. 2004. Methods of assessing microbial activity and inhibition under anaerobic conditions: a literature review. Rev. Environ. Sci. Biotechnol. 3:93-115. https://doi.org/10.1007/s11157-004-5762-z
  22. Shahriari, S., M. Warith, M. Hamoda and K. J. Kennedy. 2012. Anaerobic digestion of organic fraction of municipal solid waste combining two pretreatment modalities, high temperature microwave and hydrogen peroxide. Waste Manag. 32:41-52. https://doi.org/10.1016/j.wasman.2011.08.012
  23. Sommer, S. G., S. O. Petersen and H. B. Moller. 2004. Algorithms for calculating methane and nitrous oxide emissions from manure management. Nutr. Cycl. Agroecosyst. 69:143-154. https://doi.org/10.1023/B:FRES.0000029678.25083.fa
  24. Sutton, M. A., O. Oenema, J. W. Erisman, A. Leip, H. van Grinsven and W. Winiwarter. 2011. Too much of a good thing. Nature 472:159-161. https://doi.org/10.1038/472159a
  25. Symons, G. E. and A. M. Buswell. 1933. The methane fermentation of carbohydrates. J. Am. Chem. Soc. 55:2028-2036. https://doi.org/10.1021/ja01332a039
  26. Triolo, J. M., S. G. Sommer, H. B. Møller, M. R. Weisbjerg and X. Y. Jiang. 2011. A new algorithm to characterize biodegradability of biomass during anaerobic digestion: Influence of lignin concentration on methane production potential. Bioresour. Technol. 102:9395-9402. https://doi.org/10.1016/j.biortech.2011.07.026
  27. Triolo, J. M., L. Pedersen, H. Qu and S. G. Sommer. 2012. Biochemical methane potential and anaerobic biodegradability of non-herbaceous and herbaceous phytomass in biogas production. Bioresour. Technol. 125:226-232. https://doi.org/10.1016/j.biortech.2012.08.079
  28. VDI 2006. VDI 4630: Fermentation of organic materials - Characterisation of the substrate, sampling, collection of material data, fermentation tests. In: Verein Deutscher Ingenieure (VDI) (Ed.), VDI Handbuch Energietechnik. Berlin: Beuth Verlag GmbH:44-59.
  29. Vu, T. K. V., M. T. Tran and T. T. S. Dang. 2007. A survey of manure management on pig farms in northern Vietnam. Livest. Sci. 112:288-297. https://doi.org/10.1016/j.livsci.2007.09.008
  30. Xiong, Z. Q., J. R. Freney, A. R. Mosier, Z. L. Zhu, Y. Lee and K. Yagi. 2008. Impacts of population growth, changing food preferences and agricultural practices on the nitrogen cycle in East Asia. Nutr. Cycl. Agroecosyst. 80:189-198. https://doi.org/10.1007/s10705-007-9132-4

Cited by

  1. Ultimate Anaerobic Biodegradability and Multiple Decay Rate Coefficients of Organic Wastes vol.37, pp.7, 2015, https://doi.org/10.4491/KSEE.2015.37.7.387
  2. Enhanced methane production from pig slurry with pulsed electric field pre-treatment vol.39, pp.4, 2018, https://doi.org/10.1080/09593330.2017.1304455
  3. Assessment of the Variability of Biogas Production from Sugar Beet Silage as Affected by Movement and Loss of the Produced Alcohols and Organic Acids vol.9, pp.5, 2016, https://doi.org/10.3390/en9050368
  4. Biogas from mono- and co-digestion of microalgal biomass grown on piggery wastewater pp.1996-9732, 2018, https://doi.org/10.2166/wst.2018.134
  5. Nutrient characterisation and bioenergy potential of common Nigerian food wastes vol.36, pp.5, 2018, https://doi.org/10.1177/0734242X18763527
  6. Enhancement of anaerobic batch digestion of spineless cacti (Opuntia ficus indica) feedstock by aerobic pre-treatment vol.18, pp.1, 2019, https://doi.org/10.5897/AJB2018.16652
  7. 건조방법 형태에 따른 우분 고체연료 수분 감소효과 vol.24, pp.4, 2013, https://doi.org/10.17137/korrae.2016.24.4.105
  8. Key issues in modeling and optimization of lignocellulosic biomass fermentative conversion to gaseous biofuels vol.129, pp.1, 2013, https://doi.org/10.1016/j.renene.2018.06.018
  9. Recent Updates on the Use of Agro-Food Waste for Biogas Production vol.9, pp.6, 2019, https://doi.org/10.3390/app9061217
  10. Biochemical Methane Potential (BMP) Assay Method for Anaerobic Digestion Research vol.11, pp.5, 2019, https://doi.org/10.3390/w11050921
  11. A novel mathematical modelling of waste biomass decomposition to facilitate rapid methane potential prediction vol.220, pp.None, 2013, https://doi.org/10.1016/j.jclepro.2019.01.161
  12. Mixed Culture of Corn and White Lupine as an Alternative to Silage Made from Corn Monoculture Intended for Biogas Production vol.12, pp.3, 2013, https://doi.org/10.1007/s12155-019-10003-y
  13. Development and Validation of a Low-Cost Gas Density Method for Measuring Biochemical Methane Potential (BMP) vol.11, pp.12, 2013, https://doi.org/10.3390/w11122431
  14. Biomethane Potential Test: Influence of Inoculum and the Digestion System vol.10, pp.7, 2013, https://doi.org/10.3390/app10072589
  15. Potential Recovery of Biogas from Lime Waste after Juice Extraction Using Solid-Liquid Extraction Process vol.5, pp.2, 2013, https://doi.org/10.3390/recycling5020014
  16. Improving Inter-Laboratory Reproducibility in Measurement of Biochemical Methane Potential (BMP) vol.12, pp.6, 2020, https://doi.org/10.3390/w12061752
  17. Improved Food Waste Stabilization and Valorization by Anaerobic Digestion Through Supplementation of Conductive Materials and Trace Elements vol.12, pp.12, 2013, https://doi.org/10.3390/su12125222
  18. Measurement of Biochemical Methane Potential of Heterogeneous Solid Substrates: Results of a Two-Phase French Inter-Laboratory Study vol.12, pp.10, 2013, https://doi.org/10.3390/w12102814
  19. Effect of digestate from anaerobic digestion on Sorghum bicolor L. production and circular economy vol.49, pp.1, 2013, https://doi.org/10.15835/nbha49112270
  20. Critical Analysis of Methods Adopted for Evaluation of Mixing Efficiency in an Anaerobic Digester vol.13, pp.12, 2013, https://doi.org/10.3390/su13126668
  21. Evaluating the Influence of Temperature and Flow Rate on Biogas Production from Wood Waste via a Packed-Bed Bioreactor vol.46, pp.7, 2021, https://doi.org/10.1007/s13369-020-04900-0
  22. Addition of Different Biochars as Catalysts during the Mesophilic Anaerobic Digestion of Mixed Wastewater Sludge vol.11, pp.9, 2013, https://doi.org/10.3390/catal11091094
  23. Supplementation of Carbon-Based Conductive Materials and Trace Metals to Improve Biogas Production from Apple Pomace vol.13, pp.17, 2013, https://doi.org/10.3390/su13179488