Browse > Article
http://dx.doi.org/10.5713/ajas.2012.12623

Validation and Recommendation of Methods to Measure Biogas Production Potential of Animal Manure  

Pham, C.H. (Ministry of Agriculture and Rural Development, National Institute of Animal Sciences)
Triolo, J.M. (University of Southern Denmark, Faculty of Engineering, Institute of Chemical Engineering, Bio- and Environmental Engineering)
Cu, T.T.T. (Hanoi University of Agriculture, Faculty of Animal Science and Aquaculture)
Pedersen, L. (University of Southern Denmark, Faculty of Engineering, Institute of Chemical Engineering, Bio- and Environmental Engineering)
Sommer, S.G. (University of Southern Denmark, Faculty of Engineering, Institute of Chemical Engineering, Bio- and Environmental Engineering)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.26, no.6, 2013 , pp. 864-873 More about this Journal
Abstract
In developing countries, biogas energy production is seen as a technology that can provide clean energy in poor regions and reduce pollution caused by animal manure. Laboratories in these countries have little access to advanced gas measuring equipment, which may limit research aimed at improving local adapted biogas production. They may also be unable to produce valid estimates of an international standard that can be used for articles published in international peer-reviewed science journals. This study tested and validated methods for measuring total biogas and methane ($CH_4$) production using batch fermentation and for characterizing the biomass. The biochemical methane potential (BMP) ($CH_4$ NL $kg^{-1}$ VS) of pig manure, cow manure and cellulose determined with the Moller and VDI methods was not significantly different in this test (p>0.05). The biodegradability using a ratio of BMP and theoretical BMP (TBMP) was slightly higher using the Hansen method, but differences were not significant. Degradation rate assessed by methane formation rate showed wide variation within the batch method tested. The first-order kinetics constant k for the cumulative methane production curve was highest when two animal manures were fermented using the VDI 4630 method, indicating that this method was able to reach steady conditions in a shorter time, reducing fermentation duration. In precision tests, the repeatability of the relative standard deviation (RSDr) for all batch methods was very low (4.8 to 8.1%), while the reproducibility of the relative standard deviation (RSDR) varied widely, from 7.3 to 19.8%. In determination of biomethane concentration, the values obtained using the liquid replacement method (LRM) were comparable to those obtained using gas chromatography (GC). This indicates that the LRM method could be used to determine biomethane concentration in biogas in laboratories with limited access to GC.
Keywords
Batch Fermentation Method; Biochemical Methane Potential; Precision; Reproducibility;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Vu, T. K. V., M. T. Tran and T. T. S. Dang. 2007. A survey of manure management on pig farms in northern Vietnam. Livest. Sci. 112:288-297.   DOI   ScienceOn
2 Angelidaki, I. and B. K. Ahring. 1994. Anaerobic thermophilic digestion of manure at different ammonia loads: effect of temperature. Water Res. 28:727-731.   DOI   ScienceOn
3 Angelidaki, I., M. Alves, D. Bolzonella, I. Borzacconi, J. L. Campos, A.J. Guwy, S. Kalyuzhnyi, P. Jenicek and J. B. van Lier. 2009. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci. Technol. 59:927-934.   DOI   ScienceOn
4 APHA 2005. Standard Methods for the Examination of Water and Wastewater (21st ed.). Washington, DC: American Public Health Association.
5 Bhattacharya, S. C. and C. Jana. 2009. Renewable energy in India: historical developments and prospects. Energy 34:981-991.   DOI   ScienceOn
6 Bouwman, A. F., K. K. Goldewijk, K. W. Van der Hoek, A. H.W. Beusen, D. P. Van Vuuren, J. Willems, M. C. Rufino and E. Stehfest. 2012. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900-2050 period. Proc. Natl. Acad. Sci. USA.
7 Chen, Y., J. J. Cheng and K. S. Creamer. 2008. Inhibition of anaerobic digestion process: a review. Bioresour. Technol. 99:4044-4064.   DOI   ScienceOn
8 Cu, T. T. T., H. C. Pham, T. H. Le, V. C. Nguyen, X. A. Le, X. T. Nguyen and S. G. Sommer. 2012. Manure management practices on biogas and non-biogas pig farms in developing countries - using livestock farms in Vietnam as an example. J. Clean Prod. 27:64-71.   DOI   ScienceOn
9 Davidson, E. A. 2009. The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nat. Geosci. 2:659-662.   DOI
10 Demirer, G. N., M. Duran, T. H. Ergüder, E. Guven, O. Ugurlu, and U. Tezel. 2000. Anaerobic treatability and biogas production potential studies of different agro-industrial wastewaters in Turkey. Biodegradation 11:401-405.   DOI   ScienceOn
11 Sommer, S. G., S. O. Petersen and H. B. Moller. 2004. Algorithms for calculating methane and nitrous oxide emissions from manure management. Nutr. Cycl. Agroecosyst. 69:143-154.   DOI   ScienceOn
12 Xiong, Z. Q., J. R. Freney, A. R. Mosier, Z. L. Zhu, Y. Lee and K. Yagi. 2008. Impacts of population growth, changing food preferences and agricultural practices on the nitrogen cycle in East Asia. Nutr. Cycl. Agroecosyst. 80:189-198.   DOI
13 Lahav, O., B. E. Morgan and R. E. Loewenthal. 2002. Rapid, simple and accurate method for measurement of VFA and carbonate alkalinity in anaerobic reactors. Environ. Sci. Technol. 36:2736-2741.   DOI   ScienceOn
14 Møller, H. B., S. G. Sommer and B. K. Ahring. 2004. Methane productivity of manure, straw and solid fractions of manure. Biomass Bioenergy 26:485-495.   DOI   ScienceOn
15 Raposo, F., C. J. Banks, I. Siegert, S. Heaven and R. Borja. 2006. Influence of inoculum to substrate ratio on the biochemical methane potential of maize in batch tests. Process Biochem. 41:1444-1450.   DOI   ScienceOn
16 Raposo, F., V. Fernandez-Cegri, M. A. De la Rubia, R. Borja, F. Beline, C. Cavinato, G. Demirer, B. Fernández, M. Fernandez-Polanco, J. C. Frigon, R. Ganesh, P. Kaparaju, J. Koubova, R. Mendez, G. Menin, A. Peene, P. Scherer, M. Torrijos, H. Uellendahl, I. Wierinck and V. de Wilde. 2011. Biochemical methane potential (BMP) of solid organic substrates: evaluation of anaerobic biodegradability using data from an international inter-laboratory study. J. Chem. Technol. Biotechnol. 86:1088-1098.   DOI   ScienceOn
17 Rozzi, A. and E. Remigi. 2004. Methods of assessing microbial activity and inhibition under anaerobic conditions: a literature review. Rev. Environ. Sci. Biotechnol. 3:93-115.   DOI
18 Shahriari, S., M. Warith, M. Hamoda and K. J. Kennedy. 2012. Anaerobic digestion of organic fraction of municipal solid waste combining two pretreatment modalities, high temperature microwave and hydrogen peroxide. Waste Manag. 32:41-52.   DOI   ScienceOn
19 Symons, G. E. and A. M. Buswell. 1933. The methane fermentation of carbohydrates. J. Am. Chem. Soc. 55:2028-2036.   DOI
20 Sutton, M. A., O. Oenema, J. W. Erisman, A. Leip, H. van Grinsven and W. Winiwarter. 2011. Too much of a good thing. Nature 472:159-161.   DOI   ScienceOn
21 Triolo, J. M., S. G. Sommer, H. B. Møller, M. R. Weisbjerg and X. Y. Jiang. 2011. A new algorithm to characterize biodegradability of biomass during anaerobic digestion: Influence of lignin concentration on methane production potential. Bioresour. Technol. 102:9395-9402.   DOI   ScienceOn
22 Triolo, J. M., L. Pedersen, H. Qu and S. G. Sommer. 2012. Biochemical methane potential and anaerobic biodegradability of non-herbaceous and herbaceous phytomass in biogas production. Bioresour. Technol. 125:226-232.   DOI   ScienceOn
23 VDI 2006. VDI 4630: Fermentation of organic materials - Characterisation of the substrate, sampling, collection of material data, fermentation tests. In: Verein Deutscher Ingenieure (VDI) (Ed.), VDI Handbuch Energietechnik. Berlin: Beuth Verlag GmbH:44-59.
24 Hansen, T. L., S. G. Sommer, S. Gabriel and T. H. Christensen, 2006. Methane production during storage of anaerobically digested municipal organic waste. J. Environ. Qual. 35:830-836.   DOI   ScienceOn
25 Godfray, H. C., J. R. Beddington, I. R. Crute, L. Haddad, D. Lawrence, J. F. Muir, J. Pretty, S. Robinson, S. M. Thomas and C. Toulmin. 2010. Food security: The challenge of feeding 9 billion people. Science 327:812-818.   DOI   ScienceOn
26 Guwy, A. J. 2004. Equipment used for testing anaerobic biodegradability and activity. Rev. Environ. Sci. Biotechnol. 3:131-139.   DOI
27 Hansen, T. L., J. E. Schmidt, I. Angelidaki, E. Marca, J. C. Jansen, H. Mosbæk and T. H. Christensen. 2004. Method for determination of methane potentials of solid organic waste. Waste Manag. 24:393-400.   DOI   ScienceOn
28 Jiang, X., S. G. Sommer and K. V. Christensen. 2011. A review of the biogas industry in China. Energy Policy 39:6073-6081.   DOI   ScienceOn
29 Kiilholma, J. K. 2009. Hygienic Aspects of Effluent Use from Small-Scale Biogas Digesters in Northern Vietnam. Master's thesis, University of Copenhagen, Denmark.
30 Abu-Dahrieh, J., A. Orozco, E. Groom and D. Rooney. 2011. Batch and continuous biogas production from grass silage liquor. Bioresour. Technol. 102:10922-10928.   DOI   ScienceOn