Bass diffusion model have played a central role in studying the diffusion of the new products since 1969, the year of publication of Bass model. Almost 750 publications based on the Bass diffusion model have explored extensions and applications. Extension models can be divided into two types. One is the model containing marketing-mix variables and the other is the model containing additional parameters. This paper presents another extension model of the latter type. Our model allows the time varying coefficients of innovation and imitation. Two pieces approximation of time varying coefficients is introduced and it's parameters are estimated based on NLS(Non-Linear Mean Square) method. Empirical studies are performed and the results show that our model is superior to the basic Bass model and the NUI(Non-Uniform Influence) model which is the well-known extension of the Bass model. The model developed in this paper is, also, transformed into the Bass model with the ready potential adopters in order to enhance the descriptive power.
본 연구는 새로운 게임제품을 시장에 출시하는 기업들의 수요예측에 도움을 줄 수 있는 Bass 모델을 소개하고 이의 타당성을 보여주고자 한다. 마케팅 분야에서 타당성을 인정받고 있는 Bass 모델을 게임제품의 수요예측에 적용해 본 결과 Bass모델을 응용한 게임제품의 수요예측은 아케이드 게임, 온라인 게임의 경우 수요예측에 있어서 정확도가 높은 것으로 분석되었다.
국내 영화 산업 매출은 매년 증가하고 있다. 극장은 영화의 1차 판매 경로이며, 극장을 이용하는 관객 수는 부가판권에 영향을 준다. 따라서 극장을 이용하는 관객의 수는 영화 산업 매출에 직결되는 중요한 요소이다. 본 논문에서 특정일의 관객 수를 예측하기 위하여 다중선형회귀모형과 Bass 모형을 결합한 Hybrid 모형을 고려한다. 두 모형을 결합함으로써 회귀분석의 예측값을 Bass 모형의 예측값으로 보정하였다. 분석에는 개봉일이 모두 다른 세 영화를 이용하였다. All subset regression 방법을 이용해 모든 가능한 조합을 생성하고 5중 교차검증(5-fold cross validation)을 통해 5번 모형을 추정한다. 이 때 제곱근평균오차가 가장 작은 모형으로 예측값을 구한 뒤 Bass 모형의 예측값과 결합해 최종 예측값을 구하게 된다. 과거데이터가 존재할수록 Bass 모형의 가중치는 증가하면서 예측값에 보정효과를 준다는 것을 확인할 수 있었다.
1969년에 처음 고안되어 확산에 대한 마케팅 연구를 이끈 Bass Diffusion Model은 일반적으로 마케팅 연구 및 경영 과학에서 가장 성공적인 모델 중 하나다. 본 연구는 휴대전화 가입 확산을 토대로 Bass 확산 모델의 사용을 설명하며 Bass 확산 모델을 3대 선진국 시장인 한국, 일본, 중국과 신흥시장인 베트남, 태국, 카자흐스탄, 몽골에 적용했다. 실험에서는 비선형 최소자승법을 사용하여 Bass확산 모델의 매개변수를 추정하였고 휴대전화 가입의 확산은 모든 경우에 S 곡선을 따른다. m, p 및 q 매개변수를 획득한 후 국가를 세 그룹으로 그룹화하기 위해 k-평균 클러스터 분석을 사용했으며 국가를 클러스터링함으로써 확산 속도와 패턴이 유사하며 신흥시장이 있는 국가가 선진국의 발자취를 따를 수 있음을 제안한다. 연구의 목적은 시장 성숙도의 시기와 규모를 예측하고 데이터가 Bass 모델의 혁신의 일반적인 확산 곡선을 따르는지 여부를 판단하는 것이다.
A considerable amount of research has been directed at subsistence markets in the recent past with the belief that these markets can be tapped profitably by marketers. Consequently, such markets have seen the launch of a number of innovative products. However, marketers of such forecasts need timely and accurate forecasts regarding the diffusion of their products. The Bass model has been widely used in marketing management to forecast diffusion of innovative products. Given the idiosyncrasies of subsistence markets, such forecasting requires an understanding of effective estimation techniques of the Bass model and their use in subsistence markets. This article reviews the literature to achieve this objective and find out gaps in research. A finding is that there is a lack of timely estimates of Bass model parameters for marketers to act on. Consequently, this article sets a research agenda that calls for timely forecasts at the takeoff stage using appropriate estimation techniques for the Bass model in the context of subsistence markets.
본 연구에서는 국내 대형할인점의 확산을 효과적으로 설명하기 위해 기업의 정보와 구매자의 구전으로 확산을 설명하는 Bass모형에 제3의 요소로 공간적 영향력을 고려하였다. 국내 대형할인점의 확산은 확산중심지인 서울경인지역에서 저차중심지인 4개 지역권역으로 확산되는 형태를 보임에 따라 공간적 영향이 중요하게 작용할 것으로 기대된다. 본 연구에서 공간적으로 구분된 시장 A(확산중심지)가 시장 B(저차중심지)에 미치는 영향이 완전히 통제되지 못하는 상황에서 시장 A가 시장 B에 미치는 공간적 영향을 다국가확산모형(multinational diffusion model)을 확장한 공간확산모형(spatial diffusion model)을 이용하여 정의하였다. Bass모형과 공간확산모형의 모수추정을 통해 두 가지 정보전달경로와 관련된 혁신계수와 모방계수로 확산을 설명하는 Bass모형보다 공간확산모형이 국내 대형할인점 확산을 더욱 효과적으로 설명하는 것으로 나타났다. 또한 혁신중심지인 서울경인과 4개 지역권역의 소매환경을 나타내는 개념적 거리에 따라 공간확산모형에서 공간적요인의 영향력이 달라질 것이 기대되어 공간확산계수와 소매환경변수간의 상관관계를 살펴보았고, 연구결과 확산중심지에서 저차중심지에 대한 공간적 영향력은 저차중심지의 소매환경이 확산중심지의 소매환경과 유사할수록 크다는 것을 밝혀내었다.
Purpose: Compared to the rapid growth rate of the domestic automotive LED industry so far, the predictive analysis method for demand forecasting or market outlook was insufficient. Accordingly, product characteristics are analyzed through the life trend of LEDs for automotive exterior lamps and the relative strengths of p and q using the Bass model. Also, future demands are predicted. Methods: We used sales data of a leading company in domestic market of automotive LEDs. Considering the autocorrelation error term of this data, parameters m, p, and q were estimated through the modified estimation method of OLS and the NLS(Nonlinear Least Squares) method, and the optimal method was selected by comparing prediction error performance such as RMSE. Future annual demands and cumulative demands were predicted through the growth curve obtained from Bass-NLS model. In addition, various nonlinear growth curve models were applied to the data to compare the Bass-NLS model with potential market demand, and an optimal model was derived. Results: From the analysis, the parameter estimation results by Bass-NLS obtained m=1338.13, p=0.0026, q=0.3003. If the current trend continues, domestic automotive LED market is predicted to reach its maximum peak in 2021 and the maximum demand is $102.23M. Potential market demand was $1338.13M. In the nonlinear growth curve model analysis, the Gompertz model was selected as the optimal model, and the potential market size was $2864.018M. Conclusion: It is expected that the Bass-NLS method will be applied to LED sales data for automotive to find out the characteristics of the relative strength of q/p of products and to be used to predict current demand and future cumulative demand.
시계열 확산 데이터를 활용하여 Bass 확산모형을 최소자승법(OLS)으로 추정하면, 초기에는 과다 추정하고 변곡점을 지나서는 수요를 낮게 추정하는 경향이 있다. 또한 확산모형에서 필요한 변수가 모형에서 빠짐으로 인해 발생하는 설정오류는 잔차의 자기상관을 발생시킬 수 있다. 자기상관이 오차항에 있을 경우, 추정된 모형의 모수들은 불편추정치이나 비효율적 추정치가 된다. 따라서 이러한 문제를 해결하는 확산모형의 개발이 요구된다. 본 연구에서는 자기상관 오차항을 고려한 수정된 확산모형을 제안하였다. 모형의 검증을 위해 미국의 CT-스캐너와 우리나라의 FPD TV 판매량를 제안된 모형에 응용하였다. 분석결과, 제안된 모형이 기존 모형에 비해 적합도와 모형의 주요 추정 통계량에서 우수함을 보였다.
현재 에너지 효율프로그램에 대한 수요관리 목표량과 투자비는 과거 실적 데이터를 바탕으로 단일한 Bass 확산 모형을 이용하여 산정되고 있다. 국내외적으로 제품 등의 보급량 예측에 널리 사용되는 Bass 확산 모형은 시간과 세 가지 계수들에 대한 함수로 표현되며, 계수들의 추정에 있어서 제품의 과거 실적 데이터의 충분한 확보가 필수적이다. 국내의 경우 에너지 효율 측면에서 고효율기기의 수요관리 목표량 산정을 위해 기기별 보급량 예측이 선행되어야 하며, 기기별 보급량 예측은 Bass 모형을 근간으로 하고 있다. 그러나 현재 진행 중인 고효율기기 보급 프로그램의 조명기기, 인버터, 자판기와 전동기는 그 진행이 길지 않아 Bass 확산 모형을 이용한 보급량 예측에 필수요건인 충분한 실적 데이터가 존재하지 않은 실정이다. 이는 기기의 미래 보급량 예측에 큰 오차가 발생할 수 있으며 보급 예측량에 대한 정확성을 기대하기 어려우므로 앞으로의 고효율기기의 보급 예측의 방식에 제도적 개선이 필요한 상황이라 할 수 있다. 본 논문에서는 Bass, virtual Bass, Logistic과 Lawrence & Lawton 확산 모형을 이용하여 각 고효율 기기의 미래 보급 확산 추이를 살펴보았다. 또한 기기별 특성에 따른 모형 선호도 평가를 위해 통계랑 기준에 근거하여 실적 데이터와의 오차 범위를 산정하였다. 이 결과를 바탕으로 각 확산 모형을 이용한 기기 보급량 예측에 있어서 확산 모형의 단순 적용에 따른 오차 발생 원인과 기기별 특성에 따른 확산 모형 선호도를 분석하였다.
The logistic model and the Bass model have diverse names and formulae in diffusion theory. This diversity makes users or readers confused while it also contributes to the flexibility of modeling. The method of handling the integration constant, which is generated in process of deriving the closed form solution of the differential equation for a diffusion model, results in two different 'actual' models. We rename the actual four models and propose the usage of the models with respect to the purpose of model applications. The application purpose would be the explanation of historical diffusion pattern or the forecasting of future demand. Empirical validation with 86 historical diffusion data shows that misuse of the models can draw improper conclusions for the explanation of historical diffusion pattern.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.