• Title/Summary/Keyword: Basin characteristics

Search Result 1,268, Processing Time 0.027 seconds

Assessment of the Wetland Soil Development of Constructed Wetlands using Soil Properties of a Reference Wetland (시험유역 운영을 통한 강우-유출수의 비점오염물질 유출특성 분석)

  • Lee, Joo Heon;Kim, Chang Joo;Park, Min Jae;Shin, Jung Soo;Jang, Ho Won
    • Journal of Wetlands Research
    • /
    • v.14 no.2
    • /
    • pp.181-192
    • /
    • 2012
  • Dae Dong Stream basin has been selected and operated as a representative experimental basin of UNESCO IHP since year 2007. It is located at Daejeon Metropolitan city, Korea and hydrologic data such as precipitation, runoff, and water quality have been being collected and provided after establishing the monitoring plan as an experimental basin for city/disaster prevention. In this study, runoff characteristics for non-point sources of rainfall-runoff process from urban stream basins were analyzed using the flow and water quality data measured during the year 2011. As an operation result for the test subjected basin, rating curves at Panam Bridge and at Chulgap Bridge were prepared, and to compare runoff characteristics of non-point source by precipitation, by estimating the Event Mean Concentration(EMC) for 10 water quality items, runoff characteristics of non-point source per different observation points as per the precipitation, antecedent rainfall, and land utilization status were analyzed.

A Study on Current Characteristics Based on Design and Performance Test of Current Generator of KRISO's Deep Ocean Engineering Basin

  • Kim, Jin Ha;Jung, Jae Sang;Hong, Seok Won;Lee, Chun Ju;Lee, Yong Guk;Park, Il Ryong;Song, In Haeng
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.446-456
    • /
    • 2021
  • To build an environment facility of a large-scale ocean basin, various detailed reviews are required, but it is difficult to find data that introduces the related research or construction processes on the environment facility. The current generator facility for offshore structure safety evaluation tests should be implemented by rotating the water of the basin. However, when the water in the large basin rotates, relatively large flow irregularities may occur and the uniformity may not be adequate. In this paper, design and review were conducted to satisfy the performance goals of the DOEB through computational numerical analysis on the shape of the waterway and the flow straightening devices to form the current in the large tank. Based on this, the head loss, which decreases the flow rate when the large tank water rotates through the water channel, was estimated and used as the pump capacity (impeller) design data. The impeller of the DOEB current generator was designed through computational numerical analysis (CFD) based on the lift surface theory from the axial-type impeller shape for satisfying the head loss of the waterway and maximum current velocity. In order to confirm the performance of the designed impeller system, the flow rate and flow velocity performance were checked through factory test operation. And, after installing DOEB, the current flow rate and velocity performance were reviewed compare with the original design target values. Finally, by measuring the current velocity of the test area in DOEB formed through the current generator, the spatial current distribution characteristics in the test area were analyzed. Through the analysis of the current distribution characteristics of the DOEB test area, it was confirmed that the realization of the maximum current velocity and the average flow velocity distribution, the main performance goals in the waterway design process, were satisfied.

Recession Characteristics Analysis of Ssangchi Watershed (쌍치유역의 감수특성 분석)

  • 이재형;윤재민;이희주;박정인
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.459-464
    • /
    • 1999
  • The objective of this study is to analyze hydrologic recessiioon curve at the outlet of the ssangchi basin. For the development of recession equation, the initial discharge(Q0) and the recession parameters are estimated . It is shown that the accurate estimates of recession curve is easily obtained . The obtained parameters can be related to the basin characteristics, drainge area, and the total stream length so that they can be used for the development of the regional low flow estimation model.

  • PDF

Analysis of Drainage Structure Based on the Geometric Characteristics of Drainage Density and Source-Basin (배수밀도와 수원유역의 기하학적 특성을 기반으로 한 배수구조에 대한 해석)

  • Kim, Joo-Cheol;Kim, Jae-Han
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.5
    • /
    • pp.373-382
    • /
    • 2007
  • The exact resolution of channel initiation points is not so easy because of the dynamic behaviors of water movement on the hillslope. To this end, Kim, Joocheol and Kim, Jaehan(2007) have represented the channel network in real world basins for slope-area regimes using DEM. This study is its sequential content and then proposes the reliabilities of the hypothetical channel networks identified from DEM, which are assessed based on the geometric characteristics of drainage density and source-basin. The resulting drainage structures on the natural basin can be found to be depicted remarkably depending on the hypothetical channel network applied by slop-area threshold criterion. In addition, it is shown that there is a wonderful geometric similarity between the shapes of source- basin in a geomorphologically homogeneous region. Area threshold criterion could have restricted the shape of source-basin, so that it might bring about the incorrect drainage structures. But the hypothetical channel networks identified from DEM deserves special emphasis on expressing the space-filling structures nonetheless.

Determination of Suitable Antecedent Precipitation Day for the Application of NRCS Method in the Korean Basin (NRCS 유효우량 산정방법의 국내유역 적용을 위한 적정 선행강우일 결정 방안)

  • Lee, Myoung Woo;Yi, Choong Sung;Kim, Hung Soo;Shim, Myung Pil
    • Journal of Wetlands Research
    • /
    • v.7 no.3
    • /
    • pp.41-48
    • /
    • 2005
  • Generally the estimation of effective rainfall is important in the rainfall-runoff analysis. So, we must pay attention to selecting more accurate effective rainfall estimation method. Although there are many effective rainfall estimation methods, the NRCS method is widely used for the estimation of effective rainfall in the ungaged basin. However, the NRCS method was developed based on the characteristics of the river basin in USA. So, it may have problems to use the NRSC method in Korea without its verification. In the NRCS method, the antecedent precipitation of 5-day is usually used for the estimation of effective rainfall. The main purpose of this study is to investigate the suitable antecedent precipitation day in Korea river basin through the case study. This study performs the rainfall-runoff simulation for the Tanbu river basin by HEC-HMS model under the condition of varying the antecedent precipitation day from 1-day to 7-day and performs goodness of fit test by Monte Carlo simulation method. The antecedent precipitation of 2-day shows the most preferable result in the analysis. This result indicates that the NRCS method should be applied with caution according to the characteristics of the river basin.

  • PDF

Weathering Characteristics of Granitic Grus in Naesung Stream Drainage, Yeongju-Bonghwa Basin, Korean Peninsula (내성천 유역분지인 영주-봉화 분지 화강암 구릉대의 풍화 특색)

  • Kim, Youngrae;Kee, Keundo
    • Journal of The Geomorphological Association of Korea
    • /
    • v.21 no.4
    • /
    • pp.97-108
    • /
    • 2014
  • Naesung stream famous for 'sandy river', a tributary to the Nakdong River, flows through Yeongju-Bonghwa Basin, its drainage. If the dismantlement of granitic hills in basin is in final stage, weathering materials from hills into stream are finer materials like silty or sandy loam than coarse sand, because sand as weathering mantles is provided from granitic hills, in general. So the granitic hills in Yeongju-Bonghwa basin is dissecting present. As a results of the CIA analysis(A-CN-K and A-CNK-FM ternary diagram), chemical weathering of granitic grus in Yeongju-Bonghwa basin is too very weak for calcium and sodium to be dissolved and go as far as to be more weak than that of Jeongeup, Nonsan and Namwon, common granitic grus in Korean Peninsula. Therefore, the chemical characteristics of granitic hills in Yeongju-Bonghwa basin show that the alteration of weathering mantles just finished disintegration and is dissected at a standstill. Plenty of sands provided from granitic hills is filling the channel of Naesung stream.

Hydrogeological Controls on the Discharge Rate of Choosan Spring in the Nari Basin of Ulleung Island, South Korea (울릉도 나리분지 추산용천수 수량의 수리지질학적 지배요소)

  • Byeongdae Lee;Min Han;Chung-Ryul Ryoo;Byong-Wook Cho
    • The Journal of Engineering Geology
    • /
    • v.34 no.1
    • /
    • pp.13-24
    • /
    • 2024
  • The purpose of this study is to identify the geology, geologic structure, hydrogeology and geomorphic characteristics of the Nari Basin and establish the controls on the discharge of water 20,000~40,000 m3/day from the Choosan Yongchulso, Ulleung Island, South Korea. Pumice and lapilli tuffs showing well-developed stratification are the predominant rock types surrounding the spring. The spring shows a structure whereby discharge occurs along a lens-like erosion cave formed by differential erosion of strata comprising tuff or pumice tuff. The Choosan Yongchulso is located at the point where the planation surface of the Nari Basin' ends and steep slopes begin. The basin is bounded on all sides by these steep slopes, except in the north, where the Choosan Yongchulso is located. Given these geomorphic characteristics, the Choosan Yongchulso is regarded as the ultimate outlet of the basin catchment area.

The Analysis of Geomorphologic Instantaneous Unit Hydrougraph by the Channel Network (하도망의 기하학적 특성을 이용한 지형학적 순간단위도 해석)

  • 조홍제;이상배
    • Water for future
    • /
    • v.23 no.1
    • /
    • pp.89-98
    • /
    • 1990
  • This study is developed the runoff analysis method that is used the geomorphologic instantaneous unit hydrograph to the relative role of network geometry in a basin. The quantitative expressions for the geomorphologic characteristics of a basin are used Shreve's link sepration and width function method. The network geometry are used Weibull's distribution as probability model of the width function, the structural characteristics of channel networks and the other geomorphologic parameters for the gaged basin.

  • PDF

Determine the return period of flash floods by combining flash flood guidance and best fit distribution

  • Duong, Ngoc Tien;Kim, Jeong-Bae;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.362-362
    • /
    • 2020
  • Flash flood is a dangerous weather phenomenon, affecting humans and the economy. The identification, forecast of the changing trend and its characteristics are increasingly concerned. In the world, there have many methods for determining the characteristics of flash floods, in which flash flood guidance (FFG) is a fast, effective and widely used method. The main source of flash floods is short-term rainfall. In this study, we used the data of cross-sectional measurement at the tributaries and the hourly rain data from the automatic rainfall measurement stations in the Geum river basin. Besides, we use a combination of the flash flood guidance and the best fit distribution function to estimate the repeatability of flash floods for head-water catchments in Geum river basin. In which, FFG determines the threshold of rainfall for flash floods. The study has determined the best hourly rainfall distribution function for the Geum river basin and estimated the maximum rainfall of 1hr according to the return periods.

  • PDF

Analysis of Hydraulic Characteristics and Reduction of Bottom Velocity of Second Stilling Basin (2차 정수지의 수리특성 및 바닥 유속 저감효과 분석)

  • Jeong, Seokil;Lee, Ji Hun;Yoon, Jae-Seon;Lee, Seung Oh
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.5
    • /
    • pp.134-140
    • /
    • 2018
  • Scour in the downstream of hydraulic structures such as apron induces to collapse due to abruptly increasing rainfall and discharge in streams and reaches. This is because the forcible jet from overflowing is not sufficiently dissipated by existing energy dissipators, and it continues to sweep the bed materials during flood events. In this study, a second stilling basin was proposed as a countermeasure and the energy dissipation efficiency of this structure was analyzed using 3D-dimensional numerical analysis. First, results from previous research and hydraulic tests were used to verify the accuracy of the numerical model. It showed that the second stilling basin played a definite role in reducing the bottom velocity, comparing with diminishing the energy dissipation when numerical tests were conducted under scaled field conditions in Korea. This means that the second stilling basin can be a countermeasure against scour in downstream. If more efficiency analysis of the second stilling basin would be performed in terms of energy dissipator for various types of hydraulic jump, it would be an alternative solution to scouring issues.