• Title/Summary/Keyword: Basin Area

Search Result 1,650, Processing Time 0.028 seconds

Simulation study of DAF flotation basin using CFD (전산유체해석기법을 이용한 용존공기부상공정의 유동해석)

  • Park, Byungsung;Woo, Sungwoo;Park, Sungwon;Min, Jinhee;Lee, Woonyoung;You, Sunam;Jun, Gabjin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.2
    • /
    • pp.261-272
    • /
    • 2013
  • Algae boom (Red tide) in south coastal area of Korea has been appeared several times during a decade. If algae boom appears in the desalination plant, media filter and UF filter are clogged quickly, and the plant should be shutdown. In general, Algae can be removed from water by flotation better than by sedimentation, because of the low density of algal cell. The purpose of this study conducts the CFD simulation of DAF flotation basin to apply the design of the dissolved air flotation with ball filter in the Test Bed for SWRO desalination plant. In this study, Eulerian-Eulerian multiphase model was applied to simulate the behavior of air bubbles and seawater. Density difference model and gravity were used. But de-sludge process and mass transfer between air bubbles and seawater were ignored. Main parameter is hydraulic loading rate which is varied from 20 m/hr to 27.5 m/hr. Geometry of flotation basin were changed to improve the DAF performance. According to the result of this study, the increase of hydraulic loading rate causes that the flow in the separation basin is widely affected and the concentration of air is increased. The flow pattern in the contact zone of flotation basin is greatly affected by the location of nozzle header. When the nozzle header was installed not the bottom of the contact zone but the above, the opportunity of contact between influent and recycle flow was increased.

A Study on the Temporal Change of Soil Loss of Kyungan River Basin with GIS (토지이용변화에 따른 경안천 유역 토양유실에 관한 연구)

  • 김상욱;박종화
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 1995.12a
    • /
    • pp.22-32
    • /
    • 1995
  • The purpose of this study is to estimate not only the watershed soil loss but also its temporal changes of Kyungan River basin, the study area, due to the land development. To analyze the soil loss of the river basin, USLE was employed. GIS and remote sensing were also utilized to estimate the soil loss. The data for this analysis consist of a series of thematic map and remotely sensed data. The remotely sensed images for this study are Landsat TM(Oct, 28, 1997 & Sep. 22, 1992), In Kyungan River basin, not only the detection of temporal changes of land use and GVI, but also the estimation of soil loss provided very significant factors that affect to the watershed environment quality. The management of the factors of vegetative cover, slope steepness and length were the keys to reduce soil loss and solve conservation and protection issues of Kyungan River basin. GIS application with USLE to the watershed analysis allows the planner to recognize sensitive sites and to plan strategies to minimize soil loss.

  • PDF

Relationship between Abundances of Kaloula borealis and Meteorological Factors based on Habitat Features (서식지 특성에 따른 맹꽁이 개체수와 기상요인과의 관계 분석)

  • Rho, Paikho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.19 no.3
    • /
    • pp.103-119
    • /
    • 2016
  • This study aims to assess habitat feature on the large-scale spawning ground of the Boreal Digging Frog Kaloula borealis in Daemyung retarding basin of Daegu, and to analyze the relationships between species abundance and meteorological factors for each habitat. Fifty-seven(57) pitfalls were installed to collect species abundance of 4 survey regions, and high-resolution satellite image, soil sampling equipment, digital topographic map, and GPS were used to develop habitat features such as terrain, soil, vegetation, human disturbance. The analysis shows that the frog is most abundant in sloped region with densely herbaceous cover in southern part of the retarding basin. In the breeding season, lowland regions, where Phragmites communis and P. japonica dominant wetlands and temporary ponds distributed, are heavily concentrated by the species for spawning and foraging. Located in between legally protected Dalsung wetands and lowland regions of the retarding basin, riverine natural levee is ecologically important area as core habitat for Kaloula borealis, and high number of individuals were detected both breeding and non-breeding seasons. Temperate- and pressure-related meteorological elements are selected as statistically significant variables in species abundance of non-breeding season in lowland and highland regions. However, in sloped regions, only a few variables are statistically significant during non-breeding season. Moreover, breeding activities in sloped regions are statistically significant with minimum temperature, grass minimum temperature, dew point temperature, and vapor pressure. Significant meteorological factors with habitat features are effectively applied to establish species conservation strategy of the retarding basin and to construct for avoiding massive road-kills on neighboring roads of the study sites, particularly post-breeding movements from spawning to burrowing areas.

Hydrological Variability of Lake Chad using Satellite Gravimetry, Altimetry and Global Hydrological Models

  • Buma, Willibroad Gabila;Seo, Jae Young;Lee, Sang-IL
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.467-467
    • /
    • 2015
  • Sustainable water resource management requires the assessment of hydrological variability in response to climate fluctuations and anthropogenic activities. Determining quantitative estimates of water balance and total basin discharge are of utmost importance to understand the variations within a basin. Hard-to-reach areas with few infrastructures, coupled with lengthy administrative procedures makes in-situ data collection and water management processes very difficult and unreliable. In this study, the hydrological behavior of Lake Chad whose extent, extreme climatic and environmental conditions make it difficult to collect field observations was examined. During a 10 year period [January 2003 to December 2013], dataset from space-borne and global hydrological models observations were analyzed. Terrestial water storage (TWS) data retrieved from Gravity Recovery and Climate Experiment (GRACE), lake level variations from Satellite altimetry, water fluxes and soil moisture from Global Land Data Assimilation System (GLDAS) were used for this study. Furthermore, we combined altimetry lake volume with TWS over the lake drainage basin to estimate groundwater and soil moisture variations. This will be validated with groundwater estimates from WaterGAP Global Hydrology Model (WGHM) outputs. TWS showed similar variation patterns Lake water level as expected. The TWS in the basin area is governed by the lake's surface water. As expected, rainfall from GLDAS precedes GRACE TWS with a phase lag of about 1 month. Estimates of groundwater and soil moisture content volume changes derived by combining altimetric Lake Volume with TWS over the drainage basin are ongoing. Results obtained shall be compared with WaterGap Hydrology Model (WGHM) groundwater estimate outputs.

  • PDF

Assessment of Historical and Future Climatic Trends in Seti-Gandaki Basin of Nepal. A study based on CMIP6 Projections

  • Bastola Shiksha;Cho Jaepil;Jung Younghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.162-162
    • /
    • 2023
  • Climate change is a complex phenomenon having its impact on diverse sectors. Temperature and precipitation are two of the most fundamental variables used to characterize climate, and changes in these variables can have significant impacts on ecosystems, agriculture, and human societies. This study evaluated the historical (1981-2010) and future (2011-2100) climatic trends in the Seti-Gandaki basin of Nepal based on 5 km resolution Multi Model Ensemble (MME) of 18 Global Climate Models (GCMs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6) for SSP1-2.6, SSP2-4.5 and SSP5-85 scenarios. For this study, ERA5 reanalysis dataset is used for historical reference dataset instead of observation dataset due to a lack of good observation data in the study area. Results show that the basin has experienced continuous warming and an increased precipitation pattern in the historical period, and this rising trend is projected to be more prominent in the future. The Seti basin hosts 13 operational hydropower projects of different sizes, with 10 more planned by the government. Consequently, the findings of this study could be leveraged to design adaptation measures for existing hydropower schemes and provide a framework for policymakers to formulate climate change policies in the region. Furthermore, the methodology employed in this research could be replicated in other parts of the country to generate precise climate projections and offer guidance to policymakers in devising sustainable development plans for sectors like irrigation and hydropower.

  • PDF

Runoff Analysis Based on Rainfall Estimation Using Weather Radar (기상레이더 강우량 산정법을 이용한 유출해석)

  • Kim, Jin Geuk;Ahn, Sang Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1B
    • /
    • pp.7-14
    • /
    • 2006
  • The radar relationship was estimated for the selected rainfall event at Yeongchun station within Chungjudam basin where the discharge record was the range of from 1,000 CMS to 9,000 CMS. By calibrating the rainfall coefficient parameter estimated by radar relationship in small hydrology basin, rainfall with the topography properties was calculated. Three different rainfall estimation methods were compared:(1) radar relationship method (2) Thiessen method (3) Isohyetal method (4) Inverse distance method. Basin model was built by applying HEC-GeoHMS which uses digital elevation model to extract hydrological characteristic and generate river network. The proposed basin model was used as an input to HEC-HMS to build a runoff model. The runoff estimation model applying radar data showed the good result. It is proposed that the radar data would produce more rapid and accurate runoff forecasting especially in the case of the partially concentrated rainfall due to the atmospheric change. The proposed radar relationship could efficiently estimate the rainfall on the study area(Chungjudam basin).

A Study on Zoning and Management of Conservation Area and Ecological Management Plan on Urban Stream Using Marxan - A Case of Jungrangcheon(Stream) in Seoul - (Marxan을 이용한 도시하천의 보전지역 설정 및 생태적 관리방안 연구 - 서울시 중랑천을 대상으로 -)

  • Yun, Ho-Geun;Han, Bong-Ho;Kwak, Jeong-In
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.5
    • /
    • pp.16-27
    • /
    • 2020
  • This study presented a plan for the establishment of conservation areas and the ecological management of those areas in the stream based on the Marxan with Zones Program for a Jungrangcheon Stream in downtown Seoul. The application of the Marxan with Zones Program included the stage of planning unit setting, application of mapping indices, numerical correction for repetitive analysis, creation of scenario-specific optimizations through analysis, analysis of sensitivity by scenario, review, and the selection of optimal plans among the scenarios considered. As a result of the establishment of a conservation area near Jungrangcheon Stream, which has several watershed areas, including an upper-middle-class wildlife protection zone, which was previously designated and managed as a conservation area, and the migratory protection zone downstream of Jungrangcheon Stream were designated as key conservation areas. A number of wild birds were observed in the upper reaches of Jungrangcheon Stream, adjacent to the forests of Suraksan Mountain and Dobongsan Mountain. The downstream area is a habitat for migratory birds that travel along the stream and the adjacent river ecosystem, including the Hangang River confluence and Cheonggyecheon Stream confluence. Therefore, the upper and lower reaches of Jungrangcheon Stream are connected to forest ecosystems such as Dobongsan Mountain, Suraksan Mountain, and Eungbongsan Mountain, as well as urban green area and river ecosystems in the basin area, which influence the establishment of conservation areas. This study verified the establishment and evaluation of existing conservation areas through the Marxan with Zones Program during the verification of the conservation areas and was presented as in-stream management and basin management method to manage the basin areas derived from core conservation areas determined through the program.

Non-point Source Critical Area Analysis and Embedded RUSLE Model Development for Soil Loss Management in the Congaree River Basin in South Carolina, USA

  • Rhee, Jin-Young;Im, Jung-Ho
    • Spatial Information Research
    • /
    • v.14 no.4 s.39
    • /
    • pp.363-377
    • /
    • 2006
  • Mean annual soil loss was calculated and critical soil erosion areas were identified for the Congaree River Basin in South Carolina, USA using the Revised Universal Soil Loss Equation (RUSLE) model. In the RUSLE model, the mean annual soil loss (A) can be calculated by multiplying rainfall-runoff erosivity (R), soil erodibility (K), slope length and steepness (LS), crop-management (C), and support practice (P) factors. The critical soil erosion areas can be identified as the areas with soil loss amounts (A) greater than the soil loss tolerance (T) factor More than 10% of the total area was identified as a critical soil erosion area. Among seven subwatersheds within the Congaree River Basin, the urban areas of the Congaree Creek and the Gills Creek subwatersheds as well as the agricultural area of the Cedar Creek subwatershed appeared to be exposed to the risk of severe soil loss. As a prototype model for examining future effect of human and/or nature-induced changes on soil erosion, the RUSLE model customized for the area was embedded into ESRI ArcGIS ArcMap 9.0 using Visual Basic for Applications. Using the embedded model, users can modify C, LS, and P-factor values for each subwatershed by changing conditions such as land cover, canopy type, ground cover type, slope, type of agriculture, and agricultural practice types. The result mean annual soil loss and critical soil erosion areas can be compared to the ones with existing conditions and used for further soil loss management for the area.

  • PDF

Geophysical Studies on the Geological Structure in the Southern Sea of Korea (한국남해(韓國南海)의 지질구조(地質構造)에 관(關)한 지구물리학적(地球物理學的) 연구(硏究))

  • Cho, Kyu Jang;Shin, Byung Woo
    • Economic and Environmental Geology
    • /
    • v.14 no.2
    • /
    • pp.77-91
    • /
    • 1981
  • An airborne magnetometer survey was carried out over an offshore area of about $200,000km^2$ from the southeastern, southern and western part of Korea. Detailed magnetic studies on the geological structure of the southern part of above area ($100,000km^2$) was accomplished. Residual aeromagnetic map was made in order to delineate magnetic provinces, magnetic lineaments and sedimentary basins by application of least square method using computer system. To determine the depth of the sedimentary basins pseudo-gravimetric method was applied. 1. The area studied is divided into four magnetic provinces for the purpose of interpretation on the basis of the magnetic maps. 2. Near shore area and its attached islands of southern part (fiirst and second magnetic province) can be regarded as being the extension from the land geology due to presentation of strong magnetic anomalies and shallow magnetic basements. 3. Magnetic lineament 1-1 is strong magnetic anomalous region which is presumably relevant to volcanic activities in Cretaceous. The depth of magnetic basement of the lineament was determined to 1,500 m. Negative magnetic anomalous zones B1-1 and B1-2 which represent Tertiary basins showed depth of magnetic basement 3 km and 4 km each. The latter can be interpreted as extension of the Taiwan basin which is consisted of Tertiary sediments. 4. Magnetic lineament 2-1 coincide with Rainan-Fukien massif running NE-SW direction. A lineament located in central part of magnetic lineament 2-1 is well connected with extension of Sobacksan anticlinal axis on land. Volcanic rocks in Gyongsang system concentrated along this lineament. 5. The characteristics of magnetic pattern in the southern Yellow sea basin of western part of Jeju island show weaker magnetic anomalies and deeper magnetic basements than first and second magnetic provinces indicating geological structure of this basin seems to be quite different from that of Jeju strait. 6. In southern part of Jeju island, smoother magnetic pattern develope southward. Maximum depth of magnetic basement in sedimentary basins BIV-1 and BIV-2 were determined down to 6,000 m increasing its thickness toward Taiwan up to 11,000 m in the shelf area off Taichung, Taiwan. Judging from the fact that hydrocarbon was founded in the Tertiary sediments of western coastal area of Taiwan, it can be expected that hydrocarbon will be existed in these sedimentary basins of southern part of Jeju island.

  • PDF

Characteristics of Pockmark Topography in Hupo Basin, East Sea (동해 후포분지의 Pockmark 해저지형 특성 연구)

  • Kim, ChangHwan;Park, ChanHong;Lee, MyoungHoon;Choi, SoonYoung;Kim, WonHyuck
    • Economic and Environmental Geology
    • /
    • v.52 no.6
    • /
    • pp.561-571
    • /
    • 2019
  • The Hupo Basin, continental marginal basin, of the East Sea extends to Uljin-gun and Yeongdeok-gun. The Hupo Bank, a terrain that is higher than the surrounding seabed, is located at the eastern boundary of the Hupo Basin. KIOST(Korea Institute of Ocean Science and Technology) conducted detailed bathymetry surveys in the northern, central and southern areas of the Hupo Basin from 2011 to 2013. The Hupo Basin, bounded by steep slopes of the Hupo Bank, is deepened from the west coast to the east and deepest to a maximum depth of about 250 m. A narrow seafloor channel appears in the northern, central, and southern areas with the deepest depths. Numerous pockmarks appear on the seafloor at depths of about 150 ~ 250 m in all the three areas of the detailed bathymetry surveys. These pockmarks generally have diameters of about 20 to 50 m and depths of about 4 to 6 m, with craterlike submarine topography of various sizes. Seafloor sediments in the pockmark areas consist of fine silt. Comparing the shape and size of the pockmark of the Hupo Basin with that of other regions of the world, it is considered to be classified as a normal pockmark. There are about 7 pockmarks/1 ㎢ in the northern part of the three areas and about 8 pockmarks/1 ㎢ in the central part. The southern part has about 5 pockmarks/1 ㎢. If the area with the possibility of pockmarks is extended to the depth area of about 150 ~ 250 m in the entire Hupo Basin, the number of pockmarks is estimated to be more than about 4800. The pockmark of the Hupo Basin is more likely to be generated by a fluid such as a liquid than a gas. But it is necessary to scrutinize the cause and continuously monitor the pockmark.