• Title/Summary/Keyword: Basic catalyst

Search Result 199, Processing Time 0.02 seconds

The Fluidization of a Water Gas Shift Conversion Catalyst (水性가스 轉換反應觸媒의 流動化에 關하여)

  • Lee, Chai-Sung;Kim, Yeong U.
    • Journal of the Korean Chemical Society
    • /
    • v.6 no.1
    • /
    • pp.54-60
    • /
    • 1962
  • The water gas shift conversion catalyst prepared by the American Cyanamide Co. was subjected to fluidization in a 2-in. Pyrex glass tube to obtain the basic fluidization characteristic data. The size of the catalyst charged ranged from 70 to 120 meshes and it was supported on a single layer 300-mesh wire gauze through which the fluidizing medium, the air, was passed. Following are some data and facts found by the authors: (1) The catalyst particles were porous, and their surfaces were trough and irregular. (2) The average effective particle density and the average shape factor of these particles were 152.2 lb/$ft^3$ and 0.865 respectively. (3) As the particle diameter of the catalyst increased, the minimum fluid voidage of the bed decreased slightly. (4) Just before the incipient fluidization, pressure drop suddenly fell and the bed expanded simultaneously. (5) After fluidization set in, the expansion characteristics of the catalyst bed were similar to those of sand and glass beads except intense bubbling in the catalyst bed.

  • PDF

Polymerization of aniline using a peroxidase-mimetic catalyst

  • Kim, Min-Chul;Lim, Youngjoon;Lee, Sang-Yup
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.364-371
    • /
    • 2018
  • Enzyme polymerization is a benign process exploiting the unique activity of enzymes. In this study, a peroxidase-mimetic catalyst is demonstrated as an alternative to horseradish peroxidase (HRP) for the polymerization of aniline. The mimetic catalyst successfully catalyzes the polymerization of aniline monomers to produce polyaniline (PANI) in an aqueous solution. The PANI produced is rich of para-structure that is generally observed when HRP is used as a catalyst. Compared to HRP, the peroxidase-mimetic catalyst shows a considerably higher catalytic activity at neutral and weak basic conditions (pH >6.5) and at temperatures over $45^{\circ}C$, at which HRP is denatured.

A basic study on the recovery of Ni, Cu, Fe, Zn ions from wastewater with the spent catalyst (폐산화철촉매에 의한 폐수중 Ni, Cu, Fe, Zn이온 회수에 관한 기초연구)

  • Lee Hyo Sook;Oh Yeung Soon;Lee Woo Chul
    • Resources Recycling
    • /
    • v.13 no.2
    • /
    • pp.3-8
    • /
    • 2004
  • A basic study on the recovery of heavy metals such as Zn, Ni, Cu and Fe ions from wastewater was carried out with the spent iron oxide catalyst, which was used in the Styrene Monomer(SM) production company. The heavy metals could be recovered more than 98% with the spent iron oxide catalyst. The alkaline components of the spent catalyst could be precipitated the metal ions of the wastewater as metal hydroxides at the higher pH 10.6 in Ni, pH 8.0 in Cu, pH 6.5 in Fe, pH 8.5 in Zn. But the metal ions are adsorbed physically on the surface of the spent catalyst in the range of the pH of the metal hydroxides and pH 3.0, which is the isoelectric point of the iron oxide catalyst.

Investigation on the property and preparation of ferroelectric Pb(Zr,Ti)$O_3$ by Sol-Gel method (Sol-Gel법에 의한 강유전체 Pb(Zr, Ti)$O_3$의 제조 및 특성에 관한 연구)

  • 임정한;김영식;장복기
    • Electrical & Electronic Materials
    • /
    • v.7 no.6
    • /
    • pp.496-503
    • /
    • 1994
  • In recent years Sol-Gel processing provides an interesting alternative method for the fabrication of ferroelectric thin layers and powder. PZT powder was prepared from an alkoxide-based solution by a Sol-Gel method. Gelation of synthesized complex solutions, microstructure, thermal analysis and crystallization behaviors of the calcined powder were studied in accordance with a water content and a catalyst. Especially gelation and crystallization behavior were analysed with the change of pH. The gelation time decreased as the pH of the mixed solution increased. For PZT powder with 650.deg. C heat treatment, 100% perovskite phase was formed by using either acidic or basic catalyst. By using either acidic or basic catalyst, we were able to get very fine powders of uniform shape with an average particle size of 0.8-1.mu.m.

  • PDF

Electrocatalyst for the Oxygen Reduction Reaction: from the Nanoscale to the Macroscale

  • Chung, Dong Young;Sung, Yung-Eun
    • Journal of Electrochemical Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.65-72
    • /
    • 2014
  • The use of nanoscale electrocatalysts is a promising strategy for achieving high catalyst activity due to their large surface area. However, catalyst activity is not directly correlated to particle size. To understand this discrepancy, many studies have been conducted, but a full understanding has still not been achieved, despite the importance of particle size effects in designing an active catalyst. In this review, we focus on the discussion of particle size effects on the oxygen reduction reaction, and also discussed the nanoscale design beyond the nanoparticle to the meso and macroscale design.

Propagating Spiral Waves Obtained in a Catalyst-Immobilized Gel Membrane by the Belousov-Zhabotinsky Reaction System

  • Kim, Bong-Seong;Jo, Eun-Ae;Basavaraja, C.;Huh, Do-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.1956-1962
    • /
    • 2010
  • The formation of diverse spiral waves was studied in a polyacrylamide gel membrane with ruthenium(4-vinyl-4'-methyl-2,2'-bipyridine)bis(2,2'-bipyridine)bis(hexafluorophosphate) by a gas-free Belousov-Zhabotinisky (BZ) reaction system containing 1,4-cyclohexanedione (1,4-CHD). The gel membrane was found to be receptive for observing propagating waves since a clearer wave-train is obtained during a long reaction time without any disturbance from the immobilized metal catalyst which can be dissolved into the highly acidic solution of the BZ system. The distinctive waves in the system basically depend on both $BrO_3$ and 1,4-CHD in the initial phase, and are influenced by the intensity of illumination of visible light.

Lanthanum Oxide-catalyzed Transesterification of Dimethyl Carbonate with Glycerol: Effect of Surfactant

  • Lim, Seung Rok;Lee, Sang Deuk;Kim, Hoon Sik;Simanjuntak, Fidelis Stefanus Hubertson;Lee, Hyunjoo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3163-3168
    • /
    • 2014
  • Three kinds of lanthanum oxides ($La_2CO_3$) were synthesized from different methods and used as a catalyst in the transesterification of dimethyl carbonate (DMC) with glycerol for the synthesis of glycerol carbonate (GLC). Lanthanum oxide synthesized using a surfactant (S-La) showed a much higher GLC yield of 89.9% compared to other lanthanum oxides synthesized by calcination (C-La) and precipitation (P-La) at the reaction conditions of $90^{\circ}C$, DMC/glycerol = 2, and catalyst/glycerol = 5 wt %. The best catalyst was obtained when the surfactant/La weight ratio was 12. XRD study revealed that S-La has large amount of monoclinic and hexagonal $La_2O_2CO_3$ phases, which are assumed as active sites of the catalyst for the reaction.

Application of Taguchi Experimental Design for the Optimization of Effective Parameters on the Rapeseed Methyl Ester Production

  • Kim, Sun-Tae;Yim, Bong-Been;Park, Young-Taek
    • Environmental Engineering Research
    • /
    • v.15 no.3
    • /
    • pp.129-134
    • /
    • 2010
  • The optimization of experimental parameters, such as catalyst type, catalyst concentration, molar ratio of alcohol to oil and reaction temperature, on the transesterification for the production of rapeseed methyl ester has been studied. The Taguchi approach (Taguchi method) was adopted as the experimental design methodology, which was adequate for understanding the effects of the control parameters and to optimize the experimental conditions from a limited number of experiments. The optimal experimental conditions obtained from this study were potassium hydroxide as the catalyst, at a concentration of 1.5 wt %, and a reaction temperature of $60^{\circ}C$. According to Taguchi method, the catalyst concentration played the most important role in the yield of rapeseed methyl ester. Finally, the yield of rapeseed methyl ester was improved to 96.7% with the by optimal conditions of the control parameters which were obtained by Taguchi method.

Direct Growth of Graphene on Insulating Substrate by Laminated (Au/Ni) Catalyst Layer

  • Ko, Yong Hun;Kim, Yooseok;Jung, Daesung;Park, Seung Ho;Kim, Ji Sun;Shim, Jini;Yun, Hyeju;Song, Wooseok;Park, Chong-Yun
    • Applied Science and Convergence Technology
    • /
    • v.24 no.4
    • /
    • pp.117-124
    • /
    • 2015
  • A direct growth method of graphene on insulating substrate without catalyst etching and transfer process was developed using Au/Ni/a-C catalyst system. During the growth process, behavior of the Au/Ni catalyst was investigated using EDX, XPS, SEM, and Raman spectroscopy. The Au/Ni catalyst layer was evaporated during growth process of graphene. The graphene film was composed mono-layer flakes. The transmittance of the graphene film was ~80.6%.