• Title/Summary/Keyword: Basic Neuroscience

검색결과 58건 처리시간 0.026초

Antinociceptive and neuroprotective effects of bromelain in chronic constriction injury-induced neuropathic pain in Wistar rats

  • Bakare, Ahmed Olalekan;Owoyele, Bamidele Victor
    • The Korean Journal of Pain
    • /
    • 제33권1호
    • /
    • pp.13-22
    • /
    • 2020
  • Background: The continuous search for a novel neuropathic pain drug with few or no side effects has been a main focus of researchers for decades. This study investigated the antinociceptive and neuroprotective effects of bromelain in sciatic nerve ligation-induced neuropathic pain in Wistar rats. Methods: Forty-eight Wistar rats randomly divided into eight groups comprised of six animals each were used for this study. Peripheral neuropathy was induced via chronic constriction of the common sciatic nerve. Thermal hyperalgesic and mechanical allodynia were assessed using a hotplate and von Frey filaments, respectively. The functional recovery and structural architecture of the ligated sciatic nerve were evaluated using the sciatic functional index test and a histological examination of the transverse section of the sciatic nerve. The neuroprotective effects of bromelain were investigated in the proximal sciatic nerve tissue after 21 days of treatment. Results: Bromelain significantly (P < 0.05) attenuated both the thermal hyperalgesia and mechanical allodynic indices of neuropathic pain. There were improvements in sciatic function and structural integrity in rats treated with bromelain. These rats showed significant (P < 0.05) increases in sciatic nerve nuclear transcription factors (nuclear factor erythroid-derived-2-related factors-1 [NrF-1] and NrF-2), antioxidant enzymes (superoxide dismutase and glutathione), and reduced membranelipid peroxidation compared with the ligated control group. Conclusions: This study suggest that bromelain mitigated neuropathic pain by enhancing the activities of nuclear transcription factors (NrF-1 and NrF-2) which increases the antioxidant defense system that abolish neuronal stress and structural disorganization.

Proteomic analyses reveal that ginsenoside Rg3(S) partially reverses cellular senescence in human dermal fibroblasts by inducing peroxiredoxin

  • Jang, Ik-Soon;Jo, Eunbi;Park, Soo Jung;Baek, Su Jeong;Hwang, In-Hu;Kang, Hyun Mi;Lee, Je-Ho;Kwon, Joseph;Son, Junik;Kwon, Ho Jeong;Choi, Jong-Soon
    • Journal of Ginseng Research
    • /
    • 제44권1호
    • /
    • pp.50-57
    • /
    • 2020
  • Background: The cellular senescence of primary cultured cells is an irreversible process characterized by growth arrest. Restoration of senescence by ginsenosides has not been explored so far. Rg3(S) treatment markedly decreased senescence-associated β-galactosidase activity and intracellular reactive oxygen species levels in senescent human dermal fibroblasts (HDFs). However, the underlying mechanism of this effect of Rg3(S) on the senescent HDFs remains unknown. Methods: We performed a label-free quantitative proteomics to identify the altered proteins in Rg3(S)-treated senescent HDFs. Upregulated proteins induced by Rg3(S) were validated by real-time polymerase chain reaction and immunoblot analyses. Results: Finally, 157 human proteins were identified, and variable peroxiredoxin (PRDX) isotypes were highly implicated by network analyses. Among them, the mitochondrial PRDX3 was transcriptionally and translationally increased in response to Rg3(S) treatment in senescent HDFs in a time-dependent manner. Conclusion: Our proteomic approach provides insights into the partial reversing effect of Rg3 on senescent HDFs through induction of antioxidant enzymes, particularly PRDX3.

뇌염모델에서 Protein Kinase C의 발현에 관한 연구 (Expression of protein kinase C in the spinal cords of rats with autoimmune encephalomyelitis)

  • 신태균;김형민
    • 한국수의병리학회지
    • /
    • 제1권1호
    • /
    • pp.26-32
    • /
    • 1997
  • Protein kinase C an enzyme of signal transduction has been known to regulate cell proliferation activation as well as apoptosis in some cancer cell lines. To explore the role of PKC in the course of cell mediated autoimmune disease such as experimental autoimmune encephalomyelitis (EAE) EAE was induced in Lewis rats(6-8 weeks old) with immunization of myelin basic protein supplemented with complete Freund's adjuvants and affected spinal cords were sampled at days 13 postimmunization(PI) as peak stage of EAE and at days 21 PI as recovery stage. The spinal cords with EAE were subjected to Northern blot analysis and insitu hybridization of PKC delta which is one of prominant isotypes of PKC in the haematopoietic cells. Northern blot analysis showed that levels of PKS delta mRNA in the spinal cords of rats withEAE was significantly increased at days 13 PI in which inflammatory cells including T cells and macrophages in the EAE lesions appeared. however the stage. By in situ hybridization signals of PKC delta in EAE lesions was intensely expressed on the delta is also expressed on some brain cells in normal rat central nervous system This finding suggests that PKC plays an important role on either activation of inflammatory cells including encephalitogenic T cells and macrophages or apoptotic elimination of some inflammatory cells depending on the stge of EAE.

  • PDF

Maternal separation in mice leads to anxiety-like/aggressive behavior and increases immunoreactivity for glutamic acid decarboxylase and parvalbumin in the adolescence ventral hippocampus

  • Eu-Gene Kim;Wonseok Chang;SangYep Shin;Anjana Silwal Adhikari;Geun Hee Seol;Dae-Yong Song;Sun Seek Min
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제27권1호
    • /
    • pp.113-125
    • /
    • 2023
  • It has been reported that stressful events in early life influence behavior in adulthood and are associated with different psychiatric disorders, such as major depression, post-traumatic stress disorder, bipolar disorder, and anxiety disorder. Maternal separation (MS) is a representative animal model for reproducing childhood stress. It is used as an animal model for depression, and has well-known effects, such as increasing anxiety behavior and causing abnormalities in the hypothalamic-pituitary-adrenal (HPA) axis. This study investigated the effect of MS on anxiety or aggression-like behavior and the number of GABAergic neurons in the hippocampus. Mice were separated from their dams for four hours per day for 19 d from postnatal day two. Elevated plus maze (EPM) test, resident-intruder (RI) test, and counted glutamic acid decarboxylase 67 (GAD67) or parvalbumin (PV) positive cells in the hippocampus were executed using immunohistochemistry. The maternal segregation group exhibited increased anxiety and aggression in the EPM test and the RI test. GAD67-positive neurons were increased in the hippocampal regions we observed: dentate gyrus (DG), CA3, CA1, subiculum, presubiculum, and parasubiculum. PV-positive neurons were increased in the DG, CA3, presubiculum, and parasubiculum. Consistent with behavioral changes, corticosterone was increased in the MS group, suggesting that the behavioral changes induced by MS were expressed through the effect on the HPA axis. Altogether, MS alters anxiety and aggression levels, possibly through alteration of cytoarchitecture and output of the ventral hippocampus that induces the dysfunction of the HPA axis.

Data Visualization using Linear and Non-linear Dimensionality Reduction Methods

  • Kim, Junsuk;Youn, Joosang
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권12호
    • /
    • pp.21-26
    • /
    • 2018
  • As the large amount of data can be efficiently stored, the methods extracting meaningful features from big data has become important. Especially, the techniques of converting high- to low-dimensional data are crucial for the 'Data visualization'. In this study, principal component analysis (PCA; linear dimensionality reduction technique) and Isomap (non-linear dimensionality reduction technique) are introduced and applied to neural big data obtained by the functional magnetic resonance imaging (fMRI). First, we investigate how much the physical properties of stimuli are maintained after the dimensionality reduction processes. We moreover compared the amount of residual variance to quantitatively compare the amount of information that was not explained. As result, the dimensionality reduction using Isomap contains more information than the principal component analysis. Our results demonstrate that it is necessary to consider not only linear but also nonlinear characteristics in the big data analysis.

뇌기능영상기반 기능적 연결성 행렬의 서로 다른 성분 비율과 주성분 벡터에 따른 자폐 스펙트럼 장애의 랜덤 포레스트 분류성능 비교 (Comparison of random forest classification performance of autism spectrum disorders according to different component ratios of the functional connectivity matrix and principal component vectors using neuroimaging)

  • 최형신;박현진
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 춘계학술발표대회
    • /
    • pp.351-353
    • /
    • 2021
  • 자폐 스펙트럼 장애는 이질적인 신경 발달 장애로, 뇌기능영상에 기반한 기능적 연결성 행렬을 이용해 연구가 활발하게 진행된다. 기능적 연결성 행렬을 분석하기 위해 주성분 분석방법을 이용하며, 이를 통해 뇌의 기능적 경향성 패턴을 확인할 수 있다. 이 때, 서로 다른 연결성 성분 비율과 주성분 벡터를 이용해서 다양한 기능적 경향성 패턴을 얻을 수 있다. 패턴에 따른 랜덤 포레스트 분류 모델의 성능이 달라지는데 이를 비교해본 결과, 상위 50%의 성분을 이용하여 만든 기능적 경향성 패턴 1 이 데이터의 설명 비율도 높고, 우수한 분류 성능을 보이는 것을 확인했다.

Radiomics in Breast Imaging from Techniques to Clinical Applications: A Review

  • Seung-Hak Lee;Hyunjin Park;Eun Sook Ko
    • Korean Journal of Radiology
    • /
    • 제21권7호
    • /
    • pp.779-792
    • /
    • 2020
  • Recent advances in computer technology have generated a new area of research known as radiomics. Radiomics is defined as the high throughput extraction and analysis of quantitative features from imaging data. Radiomic features provide information on the gray-scale patterns, inter-pixel relationships, as well as shape and spectral properties of radiological images. Moreover, these features can be used to develop computational models that may serve as a tool for personalized diagnosis and treatment guidance. Although radiomics is becoming popular and widely used in oncology, many problems such as overfitting and reproducibility issues remain unresolved. In this review, we will outline the steps of radiomics used for oncology, specifically addressing applications for breast cancer patients and focusing on technical issues.

에듀테크를 활용한 기초의학 분야 플립드 러닝 수업 설계 모형 개발 : RECIPE 모델 (Development of Flipped Learning Class Design Model in Basic Medicine using Edutech : RECIPE Model)

  • 이문영;이효림
    • 한국엔터테인먼트산업학회논문지
    • /
    • 제15권8호
    • /
    • pp.255-267
    • /
    • 2021
  • 본 연구의 목적은 스마트도구를 활용한 플립드 러닝 수업 설계 모형을 개발하고 그 타당성을 검증함으로써 체계적이고 효과적인 기초의학 교육을 위한 기초자료를 제시함에 있다. 이를 위해 본 연구에서는 문헌고찰을 바탕으로 모형 시안을 개발하였으며, 전문가 검토 및 현장 적용을 통해 그 타당성을 검증하였다. 본 연구에서는 스마트 도구를 활용한 플립드러닝 수업 설계 모형으로서 RECIPE (R: Ready, E: Establish a Plan, C: Create and Connect Media, I: Into the Classroom, P: Process-focused Assessment, E: Evaluation) 모델을 개발하였다. 이 모델은 플립드 러닝을 설계하는 각각의 단계에서 적합한 스마트도구를 적용함으로서 학습효과를 제고시키는 모델이다. 2019년 1학기 해부학 및 신경과학 강의 개발에 본 모델을 적용한 결과 학생들의 흥미와 만족도가 높게 나타난 결과를 토대로 기초의학 분야에서의 특화된 모델로서 제안하는 바이다. 따라서 본 연구에서 개발한 RECIPE 모델은 여러 기초의학 관련 수업에 적용 가능하며, 이에 기초한 플립드 러닝 수업 설계를 통해 학생들의 기초의학에 대한 이해를 도모할 수 있을 것으로 기대한다.

Discrete-Time Feedback Error Learning with PD Controller

  • Wongsura, Sirisak;Kongprawechnon, Waree
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1911-1916
    • /
    • 2005
  • In this study, the basic motor control system had been investigated. The Discrete-Time Feedback Error Learning (DTFEL) method is used to control this system. This method is anologous to the original continuous-time version Feedback Error Learning(FEL) control which is proposed as a control model of cerebellum in the field of computational neuroscience. The DTFEL controller consists of two main parts, a feedforward controller part and a feedback controller part. Each part will deals with different control problems. The feedback controller deals with robustness and stability, while the feedforward controller deals with response speed. The feedforward controller, used to solve the tracking control problem, is adaptable. To make such the tracking perfect, the adaptive law is designed so that the feedforward controller becomes an inverse system of the controlled plant. The novelty of FEL method lies in its use of feedback error as a teaching signal for learning the inverse model. The PD control theory is selected to be applied in the feedback part to guarantee the stability and solve the robust stabilization problems. The simulation of each individual part and the integrated one are taken to clarify the study.

  • PDF

Non-Invasive in vivo Loss Tangent Imaging: Thermal Sensitivity Estimation at the Larmor Frequency

  • Choi, Narae;Kim, Min-Oh;Shin, Jaewook;Lee, Joonsung;Kim, Dong-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • 제20권1호
    • /
    • pp.36-43
    • /
    • 2016
  • Visualization of the tissue loss tangent property can provide distinct contrast and offer new information related to tissue electrical properties. A method for non-invasive imaging of the electrical loss tangent of tissue using magnetic resonance imaging (MRI) was demonstrated, and the effect of loss tangent was observed through simulations assuming a hyperthermia procedure. For measurement of tissue loss tangent, radiofrequency field maps ($B_1{^+}$ complex map) were acquired using a double-angle actual flip angle imaging MRI sequence. The conductivity and permittivity were estimated from the complex valued $B_1{^+}$ map using Helmholtz equations. Phantom and ex-vivo experiments were then performed. Electromagnetic simulations of hyperthermia were carried out for observation of temperature elevation with respect to loss tangent. Non-invasive imaging of tissue loss tangent via complex valued $B_1{^+}$ mapping using MRI was successfully conducted. Simulation results indicated that loss tangent is a dominant factor in temperature elevation in the high frequency range during hyperthermia. Knowledge of the tissue loss tangent value can be a useful marker for thermotherapy applications.