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INTRODUCTION

Radiological imaging is mandatory for diagnosis, 
staging, treatment planning, post-operative surveillance, 
and response evaluation during the routine management 
of cancer. These imaging methods include simple X-ray 
radiography, ultrasound (US), computed tomography (CT), 
positron emission tomography, and magnetic resonance 
imaging (MRI). It has been postulated that these 
radiological images contain more information that is not 
visible to the human eye. This information is regarded as 
radiological texture and can provide additional details on 
the targeted tissue. Researchers have suggested that this 
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invisible information can be extracted from images using 
advanced texture and shape analysis. Recent advancements 
in computer technology used to investigate these texture 
and shape analyses have led to the development of a new 
area of research termed radiomics. 

Radiomics is based on the assumption that extracted 
imaging data are the product of mechanisms occurring 
at a genetic and molecular level linked to the genotypic 
and phenotypic characteristics of the tissue (1, 2). A 
high-throughput extraction of quantitative features from 
radiological images creating a high-dimensional data set 
followed by data mining for potentially improved decision 
support is typically performed (3-5). Traditionally, radiomics 
features provide information regarding gray-scale patterns, 
inter-pixel relationships, shape, and spectral properties 
within regions of interest (ROIs) on radiological images (6-
8). Incorporated with clinicopathological data, radiomics is 
well suited to the concept of personalized medicine and has 
drawn considerable attention in radiology (3, 9).

In this review, we will outline the steps of radiomics used 
in oncology focusing on MRI, in addition to mammography, 
digital breast tomosynthesis (DBT), and US, specifically 
addressing potential applications in breast cancer imaging 
and focusing on technical issues.
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Specification of ROIs
The next step is to specify (or segment) the ROI, from 

which radiomics features are computed. ROIs are specified 
to limit the spatial extents of the analysis and can be 
specified manually, semi-automatically, or automatically 
(16, 17). Among the methods of tumor segmentation, 
automated or semi-automated methods have been reported 
to be superior to manual methods for segmenting the tumor 
(18, 19). If the target region has a well-defined boundary, 
all three methods of ROI specification are possible. For 
target regions that require expertise to specify, manual 
segmentation is necessary. 

Feature Extraction
The third step is feature extraction, which computes 

hundreds or thousands of features from the ROIs. The 
features are defined using mathematical formulas and are 
thus objective imaging features. The features are broadly 
classified into four categories: morphological, histogram-
based, textural, and transform-based features (9). 
Morphological features conventionally reflect the shape and 
physical characteristics of the ROI. Notable features in this 
category include the compactness, sphericity, surface area, 
convexity, and surface-to-volume ratio (9, 20). Histogram-
based features extract information from the intensity 
histogram of the ROI. Notable features in this category 
are the median, inter-quartile range, entropy, uniformity, 

Steps in Radiomics Analysis

Radiomics analysis is an analytical framework applicable 
to various target sites and imaging modalities. This section 
describes the typical steps involved in radiomics analysis. 
An overview of the steps undertaken in the studies on 
radiomics is presented in Figure 1.

Image Acquisition 
For any study, the first step is to acquire the appropriate 

images. MRI, US, DBT, and mammography are widely used 
for breast imaging, each providing distinct information. All 
of these modalities produce potentially different raw data 
depending on the scanner model and imaging parameters 
(10). These differences reduce the reproducibility of 
radiomics studies and make direct comparisons among 
radiomics features difficult. Recently, the Quantitative 
Imaging Biomarker Alliance and Quantitative Imaging 
Network have defined standardized imaging protocols 
and recommendations in the field of quantitative imaging 
(11). This standardization effort is expected to improve 
the reproducibility of future radiomics research. It is good 
practice to acquire all imaging data using the same scanner 
and imaging parameters in order to ensure the stability of 
the features of radiomics (10, 12-15). In summary, accurate 
reporting of the imaging parameters is necessary to improve 
the reproducibility of future studies. 

Image
acquisition

Image
segmentation

Feature
extraction

Model
building

AUC
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Fig. 1. Overview of steps in radiomics studies. AUC = area under curve, KM = Kaplan-Meier
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skewness, and kurtosis. These features involve specifying 
the binning parameters (e.g., number of bins). Many studies 
have commonly adopted 256 bins. To rationalize the number 
of bins, a statistical formula such as the Freedman-Diaconis 
rule could be applied. Existing breast imaging studies 
reported the entropy, mean, minimum, and maximum as 
important features (17). These features do not consider 
the spatial neighborhood information of the voxels. In 
comparison, textural features consider voxels and their 
neighbors and are the main features that have propelled 
many radiomics studies. The gray-level co-occurrence 
matrix (GLCM)-based features are widely used to specify 
neighborhood information (6). The GLCM models intensity 
pairs (not the intensity of a single voxel) and the relative 
frequency of the pair in the neighborhood. Many radiomics 
studies have noted the entropy (different from the 
histogram-based feature), contrast, and homogeneity of the 
GLCM as important features related to tumor heterogeneity 
(21, 22). Gray-level size zone matrix (GLSZM)-based 
features are also widely used. The GLSZM assumes that the 
ROI is made of many blobs of varying intensity and size 
(23). Transform-based features involve transforming the 
original image with a user-selected transform. A new image 
is created after the transform and the features mentioned 
in the previous categories are computed (24). Multi-scale 
transforms such as wavelet and Laplacian of Gaussian 
transforms are widely used. Figure 2 contains a summary of 
the typical radiomics feature categories. 

Feature Selection 
As hundreds or thousands of features are computed in 

the previous step, we need to select a few features that 
reflect our desired response variable. The desired response 
variable differs based on the study, and various types of 
information are used including disease diagnosis, survival, 
and recurrence. Numerous studies have employed machine 
learning for the selection of relevant features. In radiomics, 
the least absolute shrinkage and selection operator (LASSO), 
its variant elastic net, principal component analysis (PCA), 
and random forest approaches are widely used (25, 26). 

Model Building
Next, models are built using the selected features to 

suit the goal of the study. For classification goals, various 
classifiers are used including support vector machine (SVM), 
random forest, and XGBoost classifiers (25, 27). To predict 
continuous variables, various regression methods including 

linear regression, regularized linear regression, and random 
forest are used. Some of the feature selection approaches 
iteratively combine the fourth and fifth steps to determine 
the features that lead to good model performance. 

Technical Issues in Radiomics Analysis

Issue of Overfitting and Validation
Most radiomics studies involve applying machine 

learning algorithms in the model building step (28). 
Modern machine learning approaches are highly flexible 
with very high degrees of freedom and thus could lead 
to overfitting to the given training data. Therefore, 
performance measures derived from the training data 
cannot be trusted and validation using independent test 
data is necessary. However, many breast radiomics studies 
are limited to single-center data lacking external validation. 
In such cases, researchers can adopt cross-validation or 

Fig. 2. Summary of typical radiomics features in four 
categories. GLCM = gray-level co-occurrence matrix, GLSZM = gray-
level size zone matrix
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retrospective studies, we could face different imaging 
settings that can be partially mitigated by using different 
imaging settings as co-variates in the regression framework. 

ROI segmentation is another layer that could hinder 
reproducibility. Automatic methods are preferred as they 
offer excellent reproducibility, but they can only be applied 
for well-defined tumor regions. The manual approach is 
time-consuming and is potentially limited by degraded 
reproducibility. Semi-automatic methods are the middle 
ground between the manual and automatic methods, 
and they allow human experts to correct mistakes in the 
automatic results (40). Manual methods would be better 
used only in cases in which the target boundaries are 
difficult to discern, and thus expert interpretation is 
required. 

Many of the radiomics features are computed from 
histograms. Histograms are affected by the binning 
parameters (i.e., the number of bins and bin width) (41). 
Researchers should select these parameters to ensure that 
they can estimate the underlying intensity distribution 
effectively. For a large ROI, using many bins is appropriate; 
however, for a small ROI, using many bins is problematic 
as there could be insufficient samples in a given bin to 
estimate the underlying distribution. The issue of histogram 
parameters is more important for textural features, as the 
histogram estimates a two-dimensional distribution (i.e., 
intensity pair), in which there is a higher probability of 
insufficient samples. 

There are many software tools for the ROI specification 
and feature extraction stages. Many software tools 
implement the most well known formulas, but there are 
many hidden nuance parameters. It is good practice to use 
widely used tools, thereby allowing other researchers to 
reproduce these studies elsewhere. For ROI specification, 
the Medical Image Processing, Analysis, and Visualization 
(MIPAV, version 9.0.0, https://mipav.cit.nih.gov/) and 3D 
slicer (version 4.10.2, https://www.slicer.org/) tools are 
widely used (42, 43). For feature extraction, PyRadiomics 
and Imaging Biomarker Explorer (IBEX) are widely used (44, 
45). Different software could result in different values on 
the same lesion.

Radiomic Application in Breast Cancer Imaging
A radiomics methodology was first applied to head and 

neck, and lung cancer imaging (9, 46, 47) and has been 
more recently applied to breast imaging (48). 

Radiomics appears capable of offering imaging 

bootstrapping using parts of the data as training data and 
the remaining parts as validation data (29-31). In cross-
validation, leave-one-out validation and k-fold cross-
validation are widely used. Leave-one-out validation is more 
susceptible to overfitting than k-fold cross-validation as we 
use most data for training and reserve only one sample for 
validation in each iteration. In bootstrapping, we randomly 
sample data into training and validation datasets many 
times (typically thousands of times), and thus can derive a 
distribution of performance results.

The optimal method of validation uses independent 
validation, which is typically found in multi-center studies. 
A radiomics model is trained using the data from one 
center and then further validated using the data of another 
center; this is always the preferred method of validation. 
However, acquiring multi-center data could be difficult for 
many researchers in practice. One solution is to leverage an 
open database such as The Cancer Imaging Archive (TCIA) 
to acquire the external validation data (32). As of January 
2020, there are 14 collections of breast imaging hosted on 
TCIA spanning MRI, mammogram, and CT images. 

Feature Reproducibility
The reproducibility of radiomics analysis is the biggest 

issue, and can occur in every step of radiomic research. The 
retrospective nature of the studies, the broad heterogeneity 
of software used, and the variability of the radiomics 
features used in the different studies raise legitimate 
concerns regarding the potential lack of reproducibility in 
radiomics research. Radiomics studies consider hundreds 
or thousands of features (33). They are derived from 
imaging data and any factors affecting the imaging data 
such as scanner types or scanning parameters might lead 
to unwanted variability in features. It is good practice 
to acquire imaging data using standardized settings (3, 
34). Data obtained under such settings could be shared 
across studies for validation. Slice thickness and voxel 
shape (i.e., rectangle vs. square) are well-known imaging 
factors affecting feature reproducibility (35). Several early 
investigators have reported that many features were often 
unstable (36-38). In a study of 219 radiomics features, 
only 66 reported intraclass correlation coefficient values 
of more than 0.90 (36, 37). More recently, Berenguer et 
al. (39) conducted a phantom study to identify the most 
reproducible and nonredundant radiomics features for 
CT. Their results indicated that many radiomics features 
were redundant and exhibited poor reproducibility. For 
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Table 1. Summary of Representative Radiomics Research in Breast Imaging (Continued)

Reference Indication Modality 
Patients 
(Number)

Radiomics 
Features 
(Number) 

Findings 

Bickelhaupt  
  et al. (49)

Malignancy prediction MRI: DWI, T2WI 222 359 Radiomics features are better than only using ADC  
  alone

Nie et al. (50) Malignancy prediction MRI: DCE 71 18 Quantitative morphologic and texture features  
  analysis showed reasonably high accuracy

Wang et al. (51) Malignancy prediction MRI: DCE 99 30 Radiomics features and pharmacokinetic factors  
  differentiated benign and malignant masses

Cai et al. (52) Malignancy prediction MRI: DCE, DWI 234 28 Developed GLCM-based features from DCE-MRI with  
  ADC as well as kinetic and morphological features

Parekh &  
  Jacobs (53)

Malignancy prediction MRI: DCE, T2WI, DWI 124 30 Entropy RFMs were found to be most reliable

Garra et al. (54) Malignancy prediction US 80 14 Sensitivity of 100% and specificity of 80% were  
  found

Luo et al. (55) Malignancy prediction US 315 1044 Radiomics nomograms showed better discrimination  
  than radiomics scores or BI-RADS category

Zhang et al.  
  (56)

Malignancy prediction US: conventional,  
  sonoelastogram

117 364 Results of sonoelastomic features showed AUC of  
  0.917 and accuracy of 88% in validation set

Drukker et al.  
  (57)

Malignancy prediction Mammogram:  
   conventional, 
three-compartment 
(water, lipid, 
protein) image 
from dual energy 
mammogram

109 5 Combined mammography radiomics plus  
   quantitative three-compartment image analysis 
prospectively showed better PPV3

Li et al. (58) Malignancy prediction Mammogram 182 32 Combining contralateral normal breast radiomic  
   features with those of lesion showed better 
performance

Tagliafico et al.  
  (59)

Malignancy prediction DBT 40 104 Radiomics analysis of DBT could be used to  
   facilitate cancer detection and characterization in 
multicenter prospective study

Holli et al. (60) Differentiation between  
  ILC and IDC 

MRI: DCE,  
  subtraction T1WI

20 300 Entropy-based GLCM features and first subtraction  
  were most effective

Waugh et al.  
  (61)

Differentiation between  
  ILC and IDC

MRI: DCE 200 220 Entropy was significantly different between IDC  
  and ILC

Li et al. (62) Correlation with  
  pathology

MRI: DCE 91 38 MRI-based phenotypes were significantly  
   associated with receptor status and heterogeneity 
was important feature to discriminate different 
subtypes

Liang et al. (63) Ki-67 correlation MRI: DCE, T2WI 318 10207 Rad-score from T2WI was significantly associated  
  with Ki-67 status

Marino et al.  
  (64)

Correlation with  
  pathology

Mammogram:  
  contrast-enhanced

100 300 Radiomics analysis with CEM has potential for  
   differentiating tumors with different pathologic 
findings

Ahmed et al.  
  (65)

NAC response MRI: DCE 100 16 Texture features showed significant differences  
  between non-responders and partial responders

Braman et al.  
  (66)

NAC response MRI: DCE 117 99 Peritumoral radiomics contributed to accurate  
  response prediction
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Table 1. Summary of Representative Radiomics Research in Breast Imaging (Continued)

Reference Indication Modality 
Patients 
(Number)

Radiomics 
Features 
(Number) 

Findings 

Braman et al.  
  (67)

NAC response MRI: DCE 209 495 Peritumoral radiomics were useful in characterizing  
   HER2+ tumors and estimating response to HER2-
targeted therapy

Liu et al. (68) NAC response MRI: T2WI, DWI, DCE 586 13950 Radiomics of multiparametric MRI yielded better  
  performance to predict pCR than clinical model

Dong et al. (69) LN metastasis prediction MRI: T2WI, DWI 146 10962 Radiomics features from DWI showed higher  
   correlation with SLN metastases than those from 
ADC mapping

Yang et al. (70) LN metastasis predcition Mammogram 147 45 Radiomics nomogram can predict LN metastasis

Yu et al. (71) LN metastasis prediction US 426 96 Radiomics nomogram can predict LN metastasis

Chan et al. (72) Cancer recurrence  
  prediction 

MRI: DCE 563 322 Radiomics model discriminate between patients at  
  low risk and those at high risk of recurrence

Park et al. (23) Cancer recurrence  
  prediction

MRI: DCE 294 156 Higher rad-score was correlated with worse disease- 
  free survival

ADC = apparent diffusion coefficient, AUC = area under curve, BI-RADS = breast imaging reporting and data system, CEM = contrast-
enhanced mammography, DBT = digital breast tomosynthesis, DCE = dynamic contrast-enhanced, DWI = diffusion-weighted imaging, 
GLCM = gray-level co-occurrence matrix, HER2 = human epidermal growth factor receptor 2, IDC = invasive ductal carcinoma, ILC = 
invasive lobular carcinoma, LN = lymph node, MRI = magnetic resonance imaging, NAC = neoadjuvant chemotherapy, pCR = pathologic 
complete response, PPV3 = positive predictive value 3, RFM = radiomics feature maps, SLN = sentinel lymph node, T1WI = T1-weighted 
image, T2WI = T2 weighted image, US = ultrasound

biomarkers, which are useful not only for diagnosing breast 
cancer, but also for predicting the treatment response 
and risk of recurrence. With regard to breast cancer, 
radiomics approaches have been investigated mainly with 
MRI. However, some studies have explored the potential 
of radiomics with different imaging modalities, including 
standard mammography, DBT, and US. We will briefly review 
the current and potential role of radiomics for predicting 
malignancy, the response to neoadjuvant chemotherapy 
(NAC), axillary lymph node metastasis, pathologic or 
prognostic factors, and cancer recurrence. To enhance the 
readers’ understanding, we have roughly divided our results 
into characterization and prediction, and then described 
more specific indications. Representative radiomics studies 
are summarized in Table 1.

Characterization

Discrimination of Benign and Malignant Lesions
As a typical and representative indication, radiomic 

features have been demonstrated to be useful for 
discriminating benign and malignant tissues in many 
disease types. 

MRI 
Several early trials performed to differentiate benign 

and malignant breast tumors (73-75) in a relatively small 
number of patients with limited numbers of radiomic 
features reported excellent results. A recent trend is to use 
a special sequence or multiparametric MRI. 

In 2017, a retrospective study aimed to establish the 
potential ability of a diffusion MRI radiomic signature to 
determine the malignant nature of suspicious breast lesions 
detected on screening mammography (49). They employed 
radiomics methodology on two unenhanced MRI sequences: 
diffusion-weighted imaging (DWI) and T2-weighted 
sequences. Two radiomics classifiers allowed benign and 
malignant lesions to be distinguished more accurately than 
the mean apparent diffusion coefficient (ADC) parameter 
alone. 

Nie et al. (50) reported that combining shape-based, 
volume-based, and GLCM textural features of post-contrast 
MR images of 71 patients using an artificial neural network 
(ANN) may be used to differentiate malignant from benign 
tumors in breast cancer (50). To focus on more technical 
aspects, the same group compared the two-feature selection 
and classification methods of logistic regression and the 
ANN to distinguish malignant breast tumors from benign 
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tumors (76)-there was no significant difference in the 
results obtained from the two methods.

In a recent study, Wang et al. (51) used morphological 
and GLCM textural features in combination with 
pharmacokinetic parameters obtained from dynamic 
contrast-enhanced (DCE)-MRI to distinguish benign and 
malignant breast tumors. The authors found that the 
textural features of GLCM entropy, GLCM energy, and 
compactness, along with the pharmacokinetic parameters of 
rate constant (kep) and volume of plasma (vp), are the most 
discriminative with a sensitivity and specificity of 91% and 
92%, respectively. Cai et al. (52) used GLCM-based textural 
features from DCE-MRI in combination with the ADC, kinetic 
curve features, and morphological features to distinguish 
benign and malignant breast tumors in a cohort of 234 
patients. 

Recently, Parekh & Jacobs (53) evaluated a correlation 
between radiomics features and different breast tissue of 
interest, and generated radiomics feature maps (RFMs) for 
the visualization and evaluation of radiological images. 
The radiomics features were then correlated with different 
breast tissues and were compared with quantitative values 
of radiological parameters. Malignant lesions exhibited 
higher values of entropy; the entropy RFM was most reliable 
when distinguishing malignant and benign lesions, thereby 
reflecting the tumor heterogeneity and its vascular status.

US 
Garra et al. (54) performed texture analysis (histogram, 

GLCM, and fractal dimension) on breast US in a cohort of 
80 patients. The authors were able to identify malignant 
lesions with a sensitivity of 100% and specificity of 80%. 
Multiple studies have differentiated benign and malignant 
breast lesions using texture analysis on US (77-79). 

A recent study by Luo et al. (55) developed nomograms 
incorporating radiomics and a breast imaging reporting and 
data system (BI-RADS) for predicting breast cancer in BI-
RADS US category 4 or 5 lesions. In their study, comprising 
315 pathologically confirmed breast lesions, nomograms 
combining the radiomics score and BI-RADS category 
exhibited better discrimination of benign and malignant 
lesions than either the radiomics score or the BI-RADS 
category.

In contrast to prior studies, Zhang et al. (56) focused 
on sonoelastograms and radiomics. Their results indicated 
that some sonoelastic features might help to discriminate 
benign and malignant breast tumors.

Mammography and DBT
Multiple studies have investigated the use of texture 

analysis on mammograms for the detection of masses (80-
82), which was achieved using variable textural features 
according to the study design. 

Drukker et al. (57) prospectively investigated the 
combination of mammography radiomics and three-
compartment (water, lipid, protein) breast (3CB) image 
analysis of dual-energy mammography. In their study, the 
positive predictive value 3 of combined mammography 
radiomics plus quantitative 3CB image analysis was higher 
than that of conventional digital mammography (48.5% 
vs. 32.1%, respectively), while the sensitivity was slightly 
decreased.

In a retrospective study of 182 patients (106 malignant 
and 76 benign) conducted by Li et al. (58), the radiomic 
features of contralateral normal breasts were used alongside 
those of diseased breasts to improve the accuracy of digital 
mammography. The performance of the combined lesion and 
parenchyma classifier in the differentiation of malignant 
and benign mammographic lesions was better than that 
which only used the lesion features. 

A multi-center and prospective study applied a radiomics 
approach to DBT for the first time to differentiate normal 
breast tissue from malignant breast tissue in patients 
with dense breasts (59). Twenty patients with negative 
standard mammography findings who had had DBT-detected 
and histologically confirmed breast cancer were enrolled. 
Further, 20 patients of similar age and breast density with 
negative DBT and US were matched as a control group. From 
104 radiomics features extracted, three (skewness, entropy, 
and 90th percentile) were found to differ significantly 
between the two groups. The results also revealed that the 
energy, entropy, and dissimilarity correlated significantly 
with the tumor size; the entropy also correlated with the 
receptor status. Despite the small patient number and the 
biased selection of features, their study indicated that a 
radiomics analysis of DBT images could be used to facilitate 
cancer detection and to acquire a better characterization of 
the detected lesion.

Correlation with Pathologic or Prognostic Factors 
Recent studies have extended the concept of radiomics 

to correlate pathologic or prognostic factors with radiomic 
features, hypothesizing that underlying tumor biological 
characteristics may be presented as different radiomic 
values. In an attempt to distinguish invasive lobular 
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on contrast-enhanced mammography (CEM) to determine 
the breast cancer invasiveness, hormone receptor status, 
and tumor grade. They retrospectively reviewed the CEM 
of 100 patients with 103 breast cancers and tried various 
combinations of radiomics features and selection methods.

Prediction

Prediction of the Response to NAC
Most radiomic studies have focused on predicting the 

response to NAC, particularly the pathologic complete 
response (pCR), using MRI.

In early research, using histogram-based features, Parikh 
et al. (84) evaluated whether changes in MRI textural 
features could predict the pCR to NAC. In their study, 
comprising 36 consecutive primary breast cancer patients, 
an increase in T2-weighted MRI uniformity and a decrease 
in T2-weighted MRI entropy after NAC was found to be 
possibly helpful for the earlier prediction of the pCR as 
compared to tumor size change. 

Ahmed et al. (65) produced GLCM-based features for 
breast MRI (pre-contrast and 1–5 minutes post-contrast) 
to predict the response in 100 breast cancer patients. The 
authors found that the texture features significantly differed 
between non-responders (decrease in tumor diameter of 
less than 50%) and partial responders (decrease in tumor 
diameter over 50%) to chemotherapy when implemented 
on post-contrast images. There were no differences in pre-
contrast images.

Interestingly, Braman et al. (66) evaluated the ability of 
radiomic textural analysis of peri-tumoral regions as well as 
intra-tumoral regions on pre-treatment DCE-MRI to predict 
the pCR to NAC in 117 breast cancer patients. Their results 
demonstrated that peri-tumoral radiomics contributed to 
the successful prediction of the pCR from pre-treatment 
imaging. In their subsequent study, Braman et al. (67) 
reconfirmed the value of peri-tumoral radiomic features for 
characterizing HER2-positive tumors and estimating the 
response to HER2-targeted NAC.

Recently, researchers utilized multiple MRI sequences and 
radiomics signatures (rad-scores) calculated from numerous 
radiomic features. For example, Liu et al. (68) conducted a 
multi-center retrospective study to evaluate the performance 
of radiomics of multiparametric MRI (RMM) for predicting 
the pCR. A total of 586 patients were enrolled and a rad-
score was calculated using 13950 radiomics features 
from T2-weighted, T1-weighted, diffusion-weighted, and 

carcinoma from invasive ductal carcinoma, Holli et al. (60) 
applied radiomic analysis (histogram, GLCM, gray-level 
run-length) on T1-weighted pre-contrast, post-contrast, 
and subtraction breast MRI datasets from 20 patients. 
The authors identified the entropy-based GLCM features 
to be the most effective features and yielded a maximum 
accuracy of 100% using linear-discriminant analysis (LDA) 
and nonlinear-discriminant analysis (NDA) on the first 
subtraction and contrast images. Waugh et al. (61) made 
similar observations that entropy, a texture measure of pixel 
distribution randomness, significantly differed between 
lobular and ductal lesions. 

Numerous studies have applied a radiomics approach to 
predict the molecular subtype of breast cancers, which is 
essential in establishing a strategy for patient treatment 
(83). Furthermore, the integration between radiomics and 
genomic features, known as radiogenomics, has revealed 
promising results in oncology, providing opportunities to 
better understand tumors and thus improve diagnosis and 
prognosis (9); however, this could be a different topic for 
review. A retrospective study published in 2016 explored 
the correlation between quantitative features and cancer 
receptor status (estrogen receptor, progesterone receptor, 
human epidermal growth factor receptor 2 [HER2]) 
(62). It was demonstrated that MR image-based tumor 
phenotypes were significantly associated with the receptor 
status and that heterogeneity is an important feature for 
discriminating different subtypes, which, in the near future, 
might be possible using a radiomics predictive signature 
that would serve as a virtual biopsy. 

The Ki-67 labeling index is routinely used as a prognostic 
marker in breast cancer patients to estimate both cell 
proliferation and the therapeutic response. Liang et al. (63) 
proposed a new, noninvasive Ki-67 predictor status based 
on breast MRI. They retrospectively analyzed 318 MR images 
of breast cancer patients (200 for the training dataset and 
118 for the validation dataset), whose Ki-67 status was 
known. The authors selected 30 features and composed 
a rad-score for each patient following the analysis of the 
T2-weighted images and enhanced T1-weighted images. 
The rad-score calculated on the T2-weighted images was 
significantly associated with the Ki-67 status, in both the 
training and validation sets. These results suggest that a 
new radiomics marker, obtained with routinely performed 
unenhanced MRI sequences, might pre-operatively predict 
Ki-67 expression in breast cancer.

Interestingly, Marino et al. (64) applied radiomics analysis 
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contrast-enhanced T1-weighted imaging before NAC. Their 
results indicated that RMM yielded a better performance for 
predicting the pCR than the clinical model.

Prediction of Lymph Node Metastases 
Determining the axillary lymph node status remains 

a mandatory requirement of the diagnostic process. In 
2017, Dong et al. (69) reported that radiomics features 
extracted from DWI sequences were more highly correlated 
with sentinel lymph node (SLN) metastases than those 
extracted from ADC. To predict axillary lymph node 
metastases pre-operatively, some researchers have applied 
radiomics nomograms based on mammography (70) or 
US (71). They built the rad-score from a large number 
of radiomic features and then incorporated additional 
radiological and clinicopathological findings. They reported 
that the radiomics nomogram was a reliable method for 
noninvasively predicting SLN metastases. 

Regarding the technical aspect, Cui et al. (85) compared 
the performance of three classifiers (SVM, k-nearest 
neighbor [KNN], LDA) and reported that the effect of the 
SVM classifier for predicting breast axillary lymph node 
metastases was significantly higher than that of the KNN or 
LDA classifiers. 

Although these results need further validation, they 
may be useful for clinical decision-making with respect to 
axillary surgery, potentially avoiding invasive procedures in 
patients at low risk of SLN metastases.

Prediction of Cancer Recurrence
Several early studies have evaluated the value of 

texture analysis in predicting the long-term outcome of 
cancer patients in pre-operative (86) or NAC settings 
(87). In pre-operative settings, Kim et al. (86) evaluated 
the relationship between MRI textural features and 
survival outcomes in 203 patients with primary breast 
cancer. They only used histogram-based uniformity and 
entropy in T2-weighted images and contrast-enhanced 
T1 subtraction images. They concluded that patients with 
breast cancers that appeared more heterogeneous on T2-
weighted images (higher entropy) and those that appeared 
less heterogeneous on contrast-enhanced T1-weighted 
subtraction images (lower entropy) had poorer outcomes. 
Similarly, in NAC settings, Pickles et al. (87) demonstrated 
that higher entropy in DCE-MRI was associated with poorer 
outcomes. Recently, in a study by Chan et al. (72), the 
potential of a radiomics model to discriminate 563 early 

breast cancer patients at low risk from those at high risk of 
recurrence during long-term follow-up was identified, based 
on radiomic features of wash-in and washout images from 
pre-treatment MRI. 

A recent retrospective study proposed a radiomics 
approach based on pre-operative MRI to develop a radiomic 
signature (rad-score) associated with breast cancer 
recurrence (23). They enrolled 294 patients affected by 
invasive breast cancer presenting as a mass on contrast-
enhanced MRI. A total of 156 features were extracted, and 
a rad-score was calculated. Patients were divided into high-
risk or low-risk categories based on the rad-score itself. 
Subsequently, a nomogram including the rad-score and MRI 
and clinicopathological findings was designed to predict 
cancer recurrence. The results revealed that a higher rad-
score correlated with poorer disease-free survival (DFS) 
and that the DFS estimation was more accurate when 
clinicopathological data were included in the evaluation. 

Future Directions

Role of Deep Learning
Radiomics studies are heavily dependent on machine 

learning and this field has developed into deep learning. 
Thus, recent radiomics studies are increasingly adopting 
deep learning methods (16, 88). The most notable 
difference between conventional machine learning and 
deep learning is the use of handcrafted features (89). 
In conventional machine learning, researchers compute 
handcrafted features that are pre-defined using domain 
expertise. This implies that we need to devise different 
features for different tasks. For example, imaging features 
optimized for breast imaging might not work well for 
other organs such as the lung. In deep learning, the deep 
learning network can learn the specific features from the 
data themselves and thus there is no need to specify pre-
defined features. This implies that one could apply the 
same deep learning methodology to solve many different 
tasks. However, the deep learning networks can properly 
learn features from the data only if you have sufficient data 
to train the network. This could be difficult to apply in 
practice as the sample size requirements for deep learning 
could be very large (90).

In the image acquisition step, deep learning could be 
used to mitigate the effects of different imaging settings. 
One could adopt deep learning-based image synthesis to 
match different imaging settings (91). For example, given 
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community, should establish a plan to share our data 
on proper power radiomics studies. One source of larger-
scale data is the research databases hosted by government 
agencies, such as TCIA (35, 98). More government 
resources should be allocated to create new databases. 
Some government funding agencies are even enforcing the 
sharing of data produced from research grants. 

Radiomics research involves the development and 
application of computer codes throughout the process. To 
improve the reproducibility of these studies, researchers 
should share all the computer codes used in their studies 
via code-sharing sites. This is a common practice in the 
computer science field, and research in radiology should 
follow this as well.

CONCLUSION 

The application of radiomics in breast cancer imaging 
is an expanding research topic and has the potential to 
be used as a surrogate marker in precision medicine. The 
studies presented in our review have reported that radiomics 
is promising for various purposes with different modalities. 
However, the application of the proposed radiomics 
approaches in real clinical practice is still hampered by 
the several concerns we have described herein. In one 
rapid review to assess the overall quality of the studies 
(99), the authors used the radiomics quality score (RQS), 
which evaluates sixteen studies relevant to a radiomics-
specific context. The results of the RQS score showed that 
the overall quality of the studies tended to be modest 
and limited. However, further advances in technology and 
efforts to standardize the methodology among researchers 
would make radiomics a more robust field and boost 
confidence in its results.
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data with mixed magnetic field strengths (i.e., 1.5T vs. 3T), 
we could generate 3T images from 1.5T images, thereby 
matching the imaging settings (92). 

In the ROI specification step, segmentation of the 
ROI could be enhanced with deep learning compared to 
conventional machine learning approaches. There has been 
significant growth in deep learning-based segmentation. A 
few of the recent deep learning segmentation algorithms 
were able to perform difficult segmentation tasks and 
possibly eliminate the need for manual segmentation (93, 
94). 

In the feature extraction step, deep learning might 
provide insights for new features (95). Current radiomics 
features are “hand-crafted” features, which are formed by 
expert opinions (9). Deep learning approaches are data-
driven and capable of learning relevant features from the 
data themselves. Thus, we could develop new features by 
careful analysis of the deep learning framework.

The widespread adoption of deep learning is primarily 
driven by superior performance in various tasks in 
radiology. However, deep learning methods suffer from the 
“interpretability” issue (96). It is unclear why this method 
works well. It essentially functions as a difficult to interpret 
“black box” that performs well. Many efforts have been 
made to address this interpretability issue, including class 
activation mapping and attention mechanisms. Another 
deep learning issue in medical imaging is the scarcity of 
pre-trained deep learning models. Deep learning models 
inherently have high degrees of freedom and we need to 
solve for thousands of millions of parameters. This requires 
massive amounts of training data. Thus, a common approach 
is to transfer a model already trained from a similar domain 
to the target domain (16, 97). This allows the optimization 
of the parameters to become feasible. There are many well-
established deep learning models for natural images (dogs, 
cats, flowers, etc.), but there is a scarcity of established 
pre-trained models in medical imaging, particularly breast 
imaging. Active research is being conducted to provide pre-
trained models specific to medical imaging.

Data Sharing and Open Science
Radiomics studies, particularly those adopting deep 

learning, have very high degrees of freedom. Thus, these 
studies require considerably more samples than conventional 
imaging studies. A team of researchers is limited by the 
samples they can collect. The only solution to this problem 
is large-scale data sharing (3, 33, 34). We, as a research 
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