• Title/Summary/Keyword: Baseband Processor

Search Result 34, Processing Time 0.022 seconds

A Low Power UHF RFID Baseband Processor for Mobile Readers (모바일용 저전력 UHF RFID 기저대역 프로세서)

  • Bae, Sung Woo;Park, Jun-Seok;Seong, Yeong Rak;Oh, Ha-Ryoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.85-91
    • /
    • 2014
  • As RFID is utilized more frequently and diversely in terms of its application areas, the application of mobile RFID technology, which integrates cellular networks and RFID, is highly anticipated. The growth and development of the RFID field has bolstered the development of mobile RFID chips to be embedded in mobile phones. Because mobile RFID chips are embedded in cell phones, limitations such as low power, small form factor, and costliness must be confronted. This study presents the design of a RFID digital baseband processor that is suitable for mobile readers. The RF analog component, which affects the baseband signals, is designed separately, in consideration of the limitations stated above. The function of the baseband processor was verified through simulations and prototyped using FPGA. The power consumption of the chip is 20mW under a 20MHz clock and the chip measures $3mm{\times}3mm$.

Programming Model for SODA-II: a Baseband Processor for Software Defined Radio Systems (SDR용 기저대역 프로세서를 위한 프로그래밍 모델)

  • Lee, Hyun-Seok;Yi, Joon-Hwan;Oh, Hyuk-Jun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.7
    • /
    • pp.78-86
    • /
    • 2010
  • This paper discusses the programming model of SODA-II that is a baseband processor for software defined radio (SDR) systems. Signal processing On-Demand Architecture Ⅱ (SODA-II) is an on-chip multiprocessor architecture consisting of four processor cores and each core has both an wide SIMD datapath and a scalar datapath. This architecture is appropriate for baseband processing that is a mixture of vector computations and scalar computations. The programming model of the SODA-II is based on C library routines. Because the library routines hide the details of complex SIMD datapath control procedures, end users can easily program the SODA-II without deep understanding on its architecture. In this paper, we discuss the details of library routines and how these routines are exploited in the implementation of baseband signal processing algorithms. As application examples, we show the implementation result of W-CDMA multipath searcher and OFDM demodulator on the SODA-II.

Design of Low-Power and Low-Complexity MIMO-OFDM Baseband Processor for High Speed WLAN Systems (고속 무선 LAN 시스템을 위한 저전력/저면적 MIMO-OFDM 기저대역 프로세서 설계)

  • Im, Jun-Ha;Cho, Mi-Suk;Jung, Yun-Ho;Kim, Jae-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.11C
    • /
    • pp.940-948
    • /
    • 2008
  • This paper presents a low-power, low-complexity design and implementation results of a high speed multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) wireless LAN (WLAN) baseband processor. The proposed processor is composed of the physical layer convergence procedure (PLCP) processor and physical medium dependent (PMD) processor, which have been optimized to have low-power and reduced-complexity architecture. It was designed in a hardware description language (HDL) and synthesized to gate-level circuits using 0.18um CMOS standard cell library. As a result, the proposed TX-PLCP processor reduced the power consumption by as much as 81% over the bit-level operation architecture. Also, the proposed MIMO symbol detector reduced the hardware complexity by 18% over the conventional SQRD-based architecture with division circuits and square root operations.

Design and Verification of IEEE 802.11a Baseband Processor (IEEE 802.11a 기저대역 프로세서의 설계 및 검증)

  • Kim, Sang-In;Kim, Su-Young;Seo, Jung-Hyun;Yun, Tae-Il;Lee, Je-Hoon;Cho, Kyoung-Rok
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.6 s.360
    • /
    • pp.9-17
    • /
    • 2007
  • This paper shows an implementation of the baseband processor compliant with the IEEE 802.11a standard. Some innovative techniques are proposed to fulfill the mandatory requirements of the standard. For verification and analysis of this design, we use a Platform-based SoC (system on chip) environment. The entire system consists of test-board for the baseband processor chip and the SoC platform for implementing MAC (medium access control).

Implementation of $2{\times}2$ MIMO LTE Base Station using GPU for SDR System (GPU를 이용한 SDR 시스템 용 LTE MIMO 기지국 기능 구현)

  • Lee, Seung Hak;Kim, Kyung Hoon;Ahn, Chi Young;Choi, Seung Won
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.4
    • /
    • pp.91-98
    • /
    • 2012
  • This paper implements 2X2 MIMO Long Term Evolution (LTE) base station using Software defined radio (SDR) technology. The implemented base station system processes baseband signals on a Graphics Processor Unit(GPU). GPU is a high-speed parallel processor which provides very important advantage of using a very powerful C-based programming environment that is Compute Unified Device Architecture (CUDA). The implemented software-based base station system processes baseband signals through GPU. It utilizes USRP2 as its RF transceiver. In order to guarantee a real-time processing of LTE baseband signals, we have adopted well-known signal processing algorithms such as frame synchronization algorithms, ML detection, etc. using GPU operating in parallel processing.

Advanced ZigBee Baseband Processor with Variable Data Rates for Internet-of-things Applications

  • Hwang, Hyunsu;Jang, Soohyun;Lee, Seongjoo;Jung, Yunho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.1
    • /
    • pp.56-64
    • /
    • 2017
  • In this paper, an advanced ZigBee (AZB) system for internet-of-things (IoT) applications is proposed which can support various data rates from 31.25 Kbps to 2 Mbps, and the implementation results of the AZB baseband processor are presented. Repetition coding for 32-chip direct-sequence spread spectrum (DSSS) symbol is applied for low rates under 250 Kbps to extend the coverage. Convolution coding, puncturing, and interleaving for non-DSSS symbol are performed for high rates from 500 Kbps to 2 Mbps for multi-media services. Simulation results show that the coverage increases at the rate of 51.8-77.3% for various environments compared with IEEE 802.15.4 ZigBee. AZB baseband processor was implemented in 180 nm CMOS process and total gate counts are 260K with the size of $5.8mm^2$.

Design and Implementation of a Bluetooth Baseband Module based on IP (IP에 기반한 블루투스 기저대역 모듈의 설계 및 구현)

  • Lim, Ji-Suk;Chun, Ik-Jae;Kim, Bo-Gwan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.04b
    • /
    • pp.1285-1288
    • /
    • 2002
  • Bluetooth wireless technology is a publicly available specification proposed for Radio Frequency (RF) communication for short-range and point-to- multipoint voice and data transfer. It operates in the 2.4GHz ISM(Industrial, Scientific and Medical) band and offers the potential for low-cost, broadband wireless access for various mobile and portable devices at range of about 10 meters. In this paper, we describe the structure and the test results of the bluetooth baseband module we have developed. This module was developed based on IP reuse. So Interface of each module such as link controller UART, and audio CODEC is designed based on ARM7 comfortable processor. We also considered various interfaces of related external chips. The fully synthesizable baseband module was fabricated in a $0.25{\mu}m$ CMOS technology occupying $2.79{\times}2.8mm^2$ area including the ARM TDMI processor. And a FPGA implementation of this module is tested for file and bit-stream transfers between PCs.

  • PDF

INMARSAT-M Baseband Modem development using TMS320C542 (TMS320C542를 이용한 INMARSAT-M Baseband Modem 개발)

  • 손교훈;배정철;임종근;김재형
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1998.11a
    • /
    • pp.257-262
    • /
    • 1998
  • 본 논문에서는 DSP(Digital Signal Processor)를 이용해 INMARSAT-M 위성통신용 단말기 중의 변ㆍ복조부를 설계하였다. R-RC(ROOt Raised Cosine) 필터에 의해 대역제한된 OQPSK 파형의 발생과 디지털 정합필터(Matched filter)를 이용한 OQPSK 복조, 부호율 1/2이고 구속장이 7인 길쌈부호기 및 클록 복구(Clock recovery)의 구현 알고리즘을 C언어와 어셈블리어로 작성하고, 모뎀을 실제 제작하여 변조기능, 복조기능으로 나누어서 동작 특성을 살펴보았다.

  • PDF

Implementation of CDMA Digital Transceiver using the FPGA (FPGA를 이용한 CDMA 디지털 트랜시버의 구현)

  • 이창희;이영훈
    • Journal of the Korea Society of Computer and Information
    • /
    • v.7 no.4
    • /
    • pp.115-120
    • /
    • 2002
  • This paper presents the implementation of IS-95 CDMA signal processor, baseband and Intermediate Frequency(IF) digital converter using Field Programmable Gate Array(FPGA) and ADC/DAC and frequency up/down converter IS-95 CDMA channel processor is generated the pilot channel signal with short PN code and Walsh-code generator. The digital If is composed of FPGA. digital transmit/receive signal processor and high speed analog-to-digital converter(ADC) and digital-to-analog converter(DAC). The frequency up/down converter consisted of filter, mixer, digital attenuator and PLL is analog conversion between intermediate frequency(IF) and baseband. This implemented system can be deployed in the IS-95 CDMA base station device etc.

  • PDF

Verification Platform with ARM- and DSP-Based Multiprocessor Architecture for DVB-T Baseband Receivers

  • Cho, Koon-Shik;Chang, June-Young;Cho, Han-Jin;Cho, Jun-Dong
    • ETRI Journal
    • /
    • v.30 no.1
    • /
    • pp.141-151
    • /
    • 2008
  • In this paper, we introduce a new verification platform with ARM- and DSP-based multiprocessor architecture. Its simple communication interface with a crossbar switch architecture is suitable for a heterogeneous multiprocessor platform. The platform is used to verify the function and performance of a DVB-T baseband receiver using hardware and software partitioning techniques with a seamless hardware/software co-verification tool. We present a dual-processor platform with an ARM926 and a Teak DSP, but it cannot satisfy the standard specification of EN 300 744 of DVB-T ETSI. Therefore, we propose a new multiprocessor strategy with an ARM926 and three Teak DSPs synchronized at 166 MHz to satisfy the required specification of DVB-T.

  • PDF