• Title/Summary/Keyword: Base-Isolated Systems

Search Result 92, Processing Time 0.025 seconds

Necessity and adequacy of near-source factors for seismically isolated buildings

  • Saifullah, Muhammad Khalid;Alhan, Cenk
    • Earthquakes and Structures
    • /
    • v.12 no.1
    • /
    • pp.91-108
    • /
    • 2017
  • Superstructures and isolation systems of seismically isolated buildings located close to active faults may observe increased seismic demands resulting from long-period and high-amplitude velocity and displacement pulses existent in near-fault ground motions as their fundamental periods may be close to or coincident with these near-fault pulse periods. In order to take these effects into account, the 1997 Uniform Building Code (UBC97) has specified near-source factors that scale up the design spectrum depending on the closest distance to the fault, the soil type at the site, and the properties of the seismic source. Although UBC97 has been superseded by the 2015 International Building Code in the U.S.A., UBC97 near-source factors are still frequently referred in the design of seismically isolated buildings around the world. Therefore it is deemed necessary and thus set as the aim of this study to assess the necessity and the adequacy of near-source factors for seismically isolated buildings. Benchmark buildings of different heights with isolation systems of different properties are used in comparing seismic responses obtained via time history analyses using a large number of historical earthquakes with those obtained from spectral analyses using the amplified spectrums established through UBC97 near-source factors. Results show that near-source factors are necessary but inadequate for superstructure responses and somewhat unconservative for base displacement response.

Performance assessment of buildings isolated with S-FBI system under near-fault earthquakes

  • Ozbulut, Osman E.;Silwal, Baikuntha
    • Smart Structures and Systems
    • /
    • v.17 no.5
    • /
    • pp.709-724
    • /
    • 2016
  • This study investigates the optimum design parameters of a superelastic friction base isolator (S-FBI) system through a multi-objective genetic algorithm to improve the performance of isolated buildings against near-fault earthquakes. The S-FBI system consists of a flat steel-PTFE sliding bearing and superelastic NiTi shape memory alloy (SMA) cables. Sliding bearing limits the transfer of shear across the isolation interface and provides damping from sliding friction. SMA cables provide restoring force capability to the isolation system together with additional damping characteristics. A three-story building is modeled with S-FBI isolation system. Multiple-objective numerical optimization that simultaneously minimizes isolation-level displacements and superstructure response is carried out with a genetic algorithm in order to optimize S-FBI system. Nonlinear time history analyses of the building with optimal S-FBI system are performed. A set of 20 near-fault ground motion records are used in numerical simulations. Results show that S-FBI system successfully control response of the buildings against near-fault earthquakes without sacrificing in isolation efficacy and producing large isolation-level deformations.

A Study on the Seismic Performance of MR Fluid Dampers in Base-Isolated Structures (기초격리된 구조물에서 자기유동성 유체감쇠기의 면진성능에 관한 연구)

  • 이종세;도학용
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.371-378
    • /
    • 2002
  • The design concepts using vibration reduction techniques, or structural control, have been proposed recently to protect infrastructure against earthquakes. The magnetorheological(MR) fluid damper is one of the most promising new devices for structural vibration reduction because of its mechanical simplicity, high dynamic range, low power requirement, large force capacity and robustness. In this study, the seismic performance of MR devices are compared with that of NZ systems as an attempt to provide some data for improving seismic design techniques applied to structures. For nonlinear time domain analysis of a base isolation system, a six-story building model is considered as a numerical example. The ground acceleration data of El Centre 1940, Mexico City 1985 and Kobe 1995 earthquakes are used as seismic excitations. The results show that MR damper systems for outperform NZ systems in wide-ranging seismic excitations with respect to intensity and period characteristics.

  • PDF

A comparative study on aseismic performances of base isolation systems for multi-span continuous bridge (다경간 연속교에 대한 면진용 교좌장치의 내진성능 비교연구)

  • Park, Kyu-Sik;Lee, Chong-Heon;Lee, In-Won
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.383-390
    • /
    • 2001
  • Various base isolation systems, which are widely used, are compared for aseismic performances of multi-span continuous bridge. They are the P-F, RB, LRB, R-FBI and EDF systems. Sensitivity analyses are carried out to determine the design parameters of various devices. The design parameters, natural period of the isolated bridge and friction coefficient of the bearing, are determined by the reciprocal relationship between displacement and bending moment of the structure. Then the relative effectiveness of the bearings is described. Bridge with the R-FBI system shows the smallest peak displacement of deck whereas bridge with the EDF system shows the smallest peak bending moment of the lower end of pier in numerical examples. Furthermore, the peak responses of bridge with the friction type bearing are less sensitive to substantial variations in the frequency range and intensity of the ground excitation than those with the rubber type bearing.

  • PDF

Seismic vibration control of bridges with excessive isolator displacement

  • Roy, Bijan K.;Chakraborty, Subrata;Mishra, Sudib K.
    • Earthquakes and Structures
    • /
    • v.10 no.6
    • /
    • pp.1451-1465
    • /
    • 2016
  • The effectiveness of base isolation (BI) systems for mitigation of seismic vibration of bridges have been extensively studied in the past. It is well established in those studies that the performance of BI system is largely dependent on the characteristics of isolator yield strength. For optimum design of such systems, normally a standard nonlinear optimization problem is formulated to minimize the maximum response of the structure, referred as Stochastic Structural Optimization (SSO). The SSO of BI system is usually performed with reference to a problem of unconstrained optimization without imposing any restriction on the maximum isolator displacement. In this regard it is important to note that the isolator displacement should not be arbitrarily large to fulfil the serviceability requirements and to avoid the possibility of pounding to the adjacent units. The present study is intended to incorporate the effect of excessive isolator displacement in optimizing BI system to control seismic vibration effect of bridges. In doing so, the necessary stochastic response of the isolated bridge needs to be optimized is obtained in the framework of statistical linearization of the related nonlinear random vibration problem. A simply supported bridge is taken up to elucidate the effect of constraint condition on optimum design and overall performance of the isolated bridge compared to that of obtained by the conventional unconstrained optimization approach.

A PERFORMANCE ASSESSMENT OF A BASE ISOLATION SYSTEM FOR AN EMERGENCY DIESEL GENERATOR IN A NUCLEAR POWER PLANT

  • Choun, Young-Sun;Kim, Min-Kyu
    • Nuclear Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.285-298
    • /
    • 2008
  • This study evaluates the performance of a coil spring-viscous damper system for the vibration and seismic isolation of an Emergency Diesel Generator (EDG) by measuring its operational vibration and seismic responses. The vibration performance of a coil spring-viscous damper system was evaluated by the vibration measurements for an identical EDG set with different base systems - one with an anchor bolt system and the other with a coil spring-viscous damper system. The seismic performance of the coil spring-viscous damper system was evaluated by seismic tests with a scaled model of a base-isolated EDG on a shaking table. The effects of EDG base isolation on the fragility curve and core damage frequency in a nuclear power plant were also investigated through a case study.

A Study on Testing of 1/4-scale and Full-size Seismic Isolation Bearings (축소모델과 실모델 면진베어링의 성능실험에 관한 연구)

  • 정민기;정지만;김두훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.194-202
    • /
    • 1996
  • An approach to increase the seismic resistance of large structures is to reduce the seismic forces, to which structures are subjected by base isolation systems. The anti-seismic performance of base-isolated beatings has been verified experimentally by shaking table tests. However, it may be difficult to perform the tests for the full-scale beatings of base-isolated structures. Therefore, the test program was designed to evaluate the reliability and properties of the beatings under a range of loading conditions including axial stress, loading frequency and direction, and temperature. The effects of scale were also evaluated by comparing the results of the 1/4-scale beatings with those from the full-scale bearings, and the ultimate behavior of both types of bearings with evaluated through a series of roll-out tests. This report draws comparisons among the different tests and bearings to determine the importance of various factors including load history, axial stress, and frequency. Comparisons between the 1/4-scale bearings were difficult because of the scaling effects in manufacturing and thermal radiation, but qualitative results from the 1/4-scale bearings can certainly be extrapolated the full-scale bearings.

  • PDF

Seismic responses of asymmetric steel structures isolated with the TCFP subjected to mathematical near-fault pulse models

  • Tajammolian, H.;Khoshnoudian, F.;Bokaeian, V.
    • Smart Structures and Systems
    • /
    • v.18 no.5
    • /
    • pp.931-953
    • /
    • 2016
  • In this paper, the effects of mass eccentricity of superstructure as well as stiffness eccentricity of isolators on the amplification of seismic responses of base-isolated structures are investigated by using mathematical near-fault pulse models. Superstructures with 3, 6 and 9 stories and aspect ratios equal to 1, 2 and 3 are mounted on a reasonable variety of Triple Concave Friction Pendulum (TCFP) bearings considering different period and damping ratio. Three-dimensional linear superstructure mounted on nonlinear isolators are subjected to simplified pulses including fling step and forward directivity while various pulse period ($T_p$) and Peak Ground Velocity (PGV) amounts as two crucial parameters of these pulses are scrutinized. Maximum isolator displacement and base shear as well as peak superstructure acceleration and drift are selected as the main engineering demand parameters. The results indicate that the torsional intensification of different demand parameters caused by superstructure mass eccentricity is more significant than isolator stiffness eccentricity. The torsion due to mass eccentricity has intensified the base shear of asymmetric 6-story model 2.55 times comparing to symmetric one. In similar circumstances, the isolator displacement and roof acceleration are increased 49 and 116 percent respectively in the presence of mass eccentricity. Furthermore, it is demonstrated that torsional effects of mass eccentricity can force the drift to reach the allowable limit of ASCE 7 standard in the presence of forward directivity pulses.

Effect of base isolation systems on increasing the resistance of structures subjected to progressive collapse

  • Tavakoli, Hamid R.;Naghavi, Fahime;Goltabar, Ali R.
    • Earthquakes and Structures
    • /
    • v.9 no.3
    • /
    • pp.639-656
    • /
    • 2015
  • Seismic isolation devices are commonly used to mitigate damages caused by seismic responses of structures. More damages are created due to progressive collapse in structures. Therefore, evaluating the impact of the isolation systems to enhance progressive collapse-resisting capacity is very important. In this study, the effect of lead rubber bearing isolation system to increase the resistance of structures against progressive collapse was evaluated. Concrete moment resisting frames were used in both the fixed and base-isolated model structures. Then, progressive collapse-resisting capacity of frames was investigated using the push down nonlinear static analysis under gravity loads that specified in GSA guideline. Nonlinear dynamic analysis was performed to consider dynamic effects column removal under earthquake. The results of the push down analysis are highly dependent on location of removal column and floor number of buildings. Also, seismic isolation system does not play an effective role in increasing the progressive collapse-resisting capacities of structures under gravity loads. Base isolation helps to localize failures and prevented from spreading it to intact span under seismic loads.

Seismic behavior of isolated bridges with additional damping under far-field and near fault ground motion

  • Losanno, Daniele;Hadad, Houman A.;Serino, Giorgio
    • Earthquakes and Structures
    • /
    • v.13 no.2
    • /
    • pp.119-130
    • /
    • 2017
  • This paper presents a numerical investigation on the seismic behavior of isolated bridges with supplemental viscous damping. Usually very large displacements make seismic isolation an unfeasible solution due to boundary conditions, especially in case of existing bridges or high risk seismic regions. First, a suggested optimal design procedure is introduced, then seismic performance of three real bridges with different isolation systems and damping levels is investigated. Each bridge is studied in four different configurations: simply supported (SSB), isolated with 10% damping (IB), isolated with 30% damping (LRB) and isolated with optimal supplemental damping ratio (IDB). Two of the case studies are investigated under spectrum compatible far-field ground motions, while the third one is subjected to near-fault strong motions. With respect to different design strategies proposed by other authors, results of the analysis demonstrated that an isolated bridge equipped with HDLRBs and a total equivalent damping ratio of 70% represents a very effective design solution. Thanks to confirmed effective performance in terms of base shear mitigation and displacement reduction under both far field and near fault ground motions, as well as for both simply supported and continuous bridges, the suggested control system provides robustness and reliability in terms of seismic performance also resulting cost effective.