• 제목/요약/키워드: Base flow Rate

검색결과 226건 처리시간 0.024초

전자기기 냉각용 마이크로채널 워터블록의 냉각성능에 관한 실험적 연구 (An Experimental Study on Cooling Performance of Microchannel Waterblock for Electronic Devices Cooling)

  • 권오경;최미진;차동안;윤재호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2432-2437
    • /
    • 2007
  • The demand of high speed and miniaturization of electronic devices results in increased power dissipation requirement for thermal management. In this work, the effects of microchannel width, height and liquid flowrate on the cooling performances of microchannel waterblock are investigated experimentally. The microchannel waterblock considered ranged in width from 0.5 to 0.9 mm, with the channel height being nominally 1.7 to 9 times the width in each case. The experiments were conducted using water, over a liquid flow rate ranging from 0.2 to 2.0 lpm. The base temperature, thermal resistance and pressure drop increase with increasing of liquid flow rate. The measured thermal resistances ranged from 0.10 to 0.23 $^{\circ}C$/W for the channel 5.

  • PDF

VCT탑재를 위한 엔진윤활시스템 평가 (Evaluation of Engine Lubrication System for Adapting Variable Cam Timing System)

  • 윤정의
    • Tribology and Lubricants
    • /
    • 제22권1호
    • /
    • pp.14-19
    • /
    • 2006
  • VCT(Variable Cam Timing) system is one of very useful engine components to improve fuel economy and overcome emission regulation etc. In order to adapt the VCT to a base engine, many design mod ifications in the mechanical and lubrication fields are required. Especially, because the VCT performance itself depends on supplied oil flow rate and pressure, it is very important to evaluate the engine lubrication system in a viewpoint of supplied oil flow rate and pressure. In this paper, unsteady transient flow network analysis on the engine oil circuit system was carried out to do this.

새로운 기포동력 마이크로펌프 제작 및 실험 (Novel Fabrication and Testing of a Bubble-Powered Micropump)

  • 정정열;곽호영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1196-1200
    • /
    • 2004
  • Micropump is very useful component in micro/nano fluidics and bioMEMS applications. In this study, a bubble-powered micropump was fabricated and tested. The micropump consists of two-parallel micro line heaters, a pair of nozzle-diffuser flow controller and a 1 mm in diameter, 400 ${\mu}m$ in depth pumping chamber. The two-parallel micro line heaters with 20 ${\mu}m-width$ and 200 ${\mu}m-length$ were fabricated to be embedded in the silicon dioxide layer of a wafer which serves as a base plate for the micropump. The pumping chamber, the pair of nozzle-diffuser unit and microchannels including the liquid inlet and outlet port were fabricated by etching through another silicon wafer. A glass wafer (thickness of $525{\pm}15$ ${\mu}m$) having two holes of inlet and outlet ports of liquid serve as upper plate of the pump. Finally the silicon wafer of the base plate, the silicon wafer of pumping chamber and the glass wafer were aligned and bonded (Si-Si bonding and anodic bonding). A sequential photograph of bubble nucleation, growth and collapse was visualized by CCD camera. Clearly liquid flow through the nozzle during the period of bubble growth and slight back flow of liquid at the end of collapsing period can be seen. The mass flow rate was found to be dependent on the duty ratio and the operation frequency. As duty ratio increases, flow rate decreases gradually when the duty ratio exceeds 60%. Also as the operation frequency increases, the flow rate of the micropump decreases slightly.

  • PDF

구강건조증 환자의 타액선 스캔의 진단학적 가치에 관한 연구 (The Study on the Diagnostic Value of Salivary Gland Scintigraphy in Patients with Xerostomia)

  • 정성창;이승우;김영구;고홍섭;염광원
    • Journal of Oral Medicine and Pain
    • /
    • 제25권2호
    • /
    • pp.145-151
    • /
    • 2000
  • The present study was performed to investigate the relationship between the salivary flow rate and the interpretation results of salivary scan in the patients with dry mouth. Twenty-five patients with dry mouth who visited the Dept. of Oral Medicine & Oral Diagnosis, Seoul National University Dental Hospital, were included. The unstimulated whole salivary flow rate was determined by the spitting method and the stimulated whole salivary flow rate was measured with gum-base chewing. Salivary scan was performed after the infusion of $^{99m}technetium$ pertechnetate(Tc) and interpreted. The obtained results were as follows: 1. The unstimulated and stimulated whole salivary flow rate were significantly decreased compared to normal value, which reflected the extensive destruction of salivary gland function in the patients with dry mouth. 2. The unstimulated and stimulated whole salivary flow rate were decreased in the group with decreased function in salivary scan compared with the group with normal function in salivary scan. However, there was no statistical significance between groups. 3. The difference between the stimulated and unstimulated whole salivary flow rates was greater in the group with normal function in salivary scan compared with the group with decreased function in salivary scan. 4. There was significant positive correlation between the stimulated and unstimulated whole salivary flow rates. The level of correlation was higher in the group with decreased function in salivary scan than the group with normal function in salivary scan. Collectively, these data suggested that salivary scan had the limited value. The comprehensive evaluation including history taking, clinical examination, clinical laboratory as well as the measurement of salivary flow rate are need for patients with dry mouth.

  • PDF

변형구배 결정소성 유한요소해석법을 이용한 니켈기 다결정 합금의 Hall-Petch 관계 모델링 (Modeling the Hall-Petch Relation of Ni-Base Polycrystalline Superalloys Using Strain-Gradient Crystal Plasticity Finite Element Method)

  • 최윤석;조경목;남대근;최일동
    • 한국재료학회지
    • /
    • 제25권2호
    • /
    • pp.81-89
    • /
    • 2015
  • A strain-gradient crystal plasticity constitutive model was developed in order to predict the Hall-Petch behavior of a Ni-base polycrystalline superalloy. The constitutive model involves statistically stored dislocation and geometrically necessary dislocation densities, which were incorporated into the Bailey-Hirsch type flow stress equation with six strength interaction coefficients. A strain-gradient term (called slip-system lattice incompatibility) developed by Acharya was used to calculate the geometrically necessary dislocation density. The description of Kocks-Argon-Ashby type thermally activated strain rate was also used to represent the shear rate of an individual slip system. The constitutive model was implemented in a user material subroutine for crystal plasticity finite element method simulations. The grain size dependence of the flow stress (viz., the Hall-Petch behavior) was predicted for a Ni-base polycrystalline superalloy NIMONIC PE16. Simulation results showed that the present constitutive model fairly reasonably predicts 0.2%-offset yield stresses in a limited range of the grain size.

얼음 벽면의 융해율을 고려한 비평행 자연대류에서 유동의 불안정성과 천이에 관한 연구 (Instability and Transition of Nonparallel Bouyancy-Induced Flows Adjacent to an Ice Surface Melting in Water)

  • 황영규
    • 설비공학논문집
    • /
    • 제8권3호
    • /
    • pp.437-450
    • /
    • 1996
  • A set of stability equations is formulated for natural convection flows adjacent to a vertical isothermal surface melting in cold pure water. It takes account of the nonparallelism of the base flows. The melting rate is regarded as a blowing velocity at the ice surface. The numerical solutions of the linear stability equations which constitute a two-point boundary value problem are accurately obtained for various values of the density extremum parameter $R=(T_m-T_{\infty})/(T_0-T_{\infty})$ in the range $0.3{\leq}R{\leq}0.6$, by using a computer code COLNEW. The blowing effects on the base flow becomes more significant as ambient temperature ($T_{\infty}$) increases to $T_{\infty}=10^{\circ}C$. The maximum decrease of heat transfer rate is about 6.4 percent. The stability results show that the melting at surface causes the critical Grashof number $G^*$ and the maximum frequency of disturbances to decrease. In comparision with the results for the conventional parallel flow model, the nonparallel flow model has a higher critical Grashof number but has lower amplification rates of disturbances than does the parallel flow model. The spatial amplification contours exhibit that the selective frequency $B_0$ of the nonparallel flow model is higher than that of the parallel flow model and that the effects of melting are rather small. The present study also indicates that the selective frequency $B_0$ can be easily predicted by the value of the frequency parameter $B^*$ at $G^*$, which comes from the neutral stability results of the nonparallel flow model.

  • PDF

이중관 내부 나노유체의 강제대류에 관한 수치적 연구 (Numerical Study of Forced Convection Nanofluid in Double Pipe)

  • 임윤승;최훈기
    • 융합정보논문지
    • /
    • 제9권12호
    • /
    • pp.147-156
    • /
    • 2019
  • 동심 이중관에서 기본유체 물과 나노입자 산화알미늄의 혼합인 나노유체를 적용한 대향유동을 유한체적법의 수치적 방법으로 열전달 특성을 규명하였다. 고온유체는 내부 원형관으로 흐르며 열을 외부 환형관으로 흐르는 저온유체로 전달한다. 고온유체와 저온유체의 체적유량 및 나노입자의 체적농도를 변수로 두어 열전달 및 유동 특성을 조사했다. 결과는 나노입자의 체적농도와 체적유량의 증가함에 따라 열전달 성능이 증가함을 보였다. 외부와 내부 관 모두에서 나노유체인 경우가 기본유체보다 나노입자의 체적농도가 8%일 때 나노유체가 열전달 성능이 최대 17% 증가하는 것을 확인했다. 또한 기본유체에 비해 환형관의 대류열전달 계수는 최대 31% 증가함을 보였으며 열교환기의 유용도는 약 20%가 상승함을 확인하였다. 하지만 나노입자의 체적농도가 8%일때 마찰인자가 최대 136% 커지는 것을 확인하였다.

실외기 shroud 형상 최적 설계 (Optimization of design parameters on the shroud of air conditioner outdoor unit)

  • 유기정;예휘열;이상봉;이관수;차우호
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.453-458
    • /
    • 2009
  • This paper presents a numerical evaluation of the flow rate of air conditioner outdoor unit as function of shroud design parameters. To determine the optimal design parameters, we investigated the flow rate by changing bell mouth height, fan height, fan guide height, fan width. The evaluation of the relative priority of the design parameters was performed to choose three important parameters in order to use a response surface method. The flow rate of the optimum model, compared to that of the base model, was increased by about 6.25%.

  • PDF

반도체 공정용 차압식 질량 유량 제어 장치의 개발 및 성능 평가 (Development and Evaluation of Differential Pressure Type Mass Flow Controller for Semiconductor Fabrication Processing)

  • 안진홍;강기태;안강호
    • 반도체디스플레이기술학회지
    • /
    • 제7권3호
    • /
    • pp.29-34
    • /
    • 2008
  • This paper describes the fabrication and characterization of a differential pressure type integrated mass-flow controller made of stainless steel for reactive and corrosive gases. The fabricated mass-flow controller is composed of a normally closed valve and differential pressure sensor. A stacked solenoid actuator mounted on a base-block is utilized for precise and rapid control of gas flow. The differential pressure flow sensor consisting of four diaphragms can detect a flow rate by deflection of diaphragm. By a feedback control from the flow sensor to the valve actuator, it is possible to keep the flow rate constant. This device shows a fast response less than 0.3 sec. Also, this device shows accuracy less than 0.1% of full scale. It is confirmed that this device is not attacked by toxic gas, so the integrated mass-flow controller can be applied to advanced semiconductor processes which need fine mass-flow control corrosive gases with fast response.

  • PDF

레이저 용접된 보론강판의 고온 인장 특성 평가 (Flow Behavior of Laser Welded Boron Steel Sheet in Uniaxial Tension at Elevated Temperature)

  • 김대용;김지훈;유동훈;정관수;김용;이문용
    • 소성∙가공
    • /
    • 제20권5호
    • /
    • pp.362-368
    • /
    • 2011
  • For the purpose of improving crashworthiness qualities and maximizing weight saving efficiency, TWB's(tailor welded blanks) of quench-hardenable boron steel sheet formed by hot stamping processes has been used for automotive BIW (body in white) applications. In this work, the flow behaviors of TWB of quench-hardenable boron steel sheet were investigated in uniaxial tension tests at elevated temperature. TWB's having a uniform thickness of 1.4mm were fabricated by laser welding. Specimens with two weld line directions were used to test the mechanical property and reliability of the weld zone. After heating at $950^{\circ}C$ for 5min, the specimens were subjected to tension test at 650, 700 and $800^{\circ}C$ with a strain rate of 0.01 /s and at $700^{\circ}C$ with strain rates of 0.01, 0.1 and 1/s. The ultimate strength of the weld zones was higher than that of the base materials at 650 and $700^{\circ}C$, but was similar to the base metal at $800^{\circ}C$. Fracture occurred at the base material at 650 and $700^{\circ}C$, but at the weld zone at $800^{\circ}C$.