Browse > Article
http://dx.doi.org/10.22156/CS4SMB.2019.9.12.147

Numerical Study of Forced Convection Nanofluid in Double Pipe  

Lim, Yun-Seung (Mechanical Engineering, Changwon National University)
Choi, Hoon-Ki (Mechanical Engineering, Changwon National University)
Publication Information
Journal of Convergence for Information Technology / v.9, no.12, 2019 , pp. 147-156 More about this Journal
Abstract
Numerical study was performed to investigate the convective heat transfer of Al2O3/water nanofluid flowing through the concentric double pipe counterflow heat exchangers. Hot fluid flowing through the inner pipe transfers its heat to cooling fluid flowing in the outer pipe. Effects of important parameters such as hot and cold volume flow rates, fluid type in the outer and inner pipes, and nanoparticles concentration on the heat transfer and flow characteristics are investigated. The results indicated that the heat transfer performance increases with increasing the hot and cold volume flow rates, as well as the particle concentrations. When both outer and inner pipes are nanofluids with 8% nanoparticle volume concentration, nanofluids showed up to 17% better heat transfer rate than basic fluids. Also, the average heat transfer coefficient of the base fluid for annulus-side improved by 31%. Approximately 20% enhancement in the heat exchanger effectiveness can be achieved with the addition of 8% alumina particles in base fluid. But, addition of nanoparticles to the base fluid enhanced friction factor by about 196%.
Keywords
Nanofluid; Counter Flow; Volume Concentration; Concentric Doublepipe; Convective Heat Transfer Coefficient; Heat Transfer Rate;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 K. Khanafer & K. Vafai. (2011). A critical synthesis of thermophysical characteristics of nanofluids. International Journal of Heat and Mass Transfer, 54, 4010-4428.
2 R.S. Vajjha & D.K. Das. (2009). Experimental determination of thermal conductivity of three nanofluids and development of new correlations. International Journal of Heat and Mass Transfer, 52, 4675-4682.   DOI
3 S. A. Zonouzi, H. Aminfar & M. Mohammadpourfard. (2014). 3D Numerical Investigation of Thermal Characteristics of Nanofluid Flow through Helical Tubes Using Two-Phase Mixture Model. International Journal for Computational Methods in Engineering Science and Mechanics, 15, 512-521.   DOI
4 D. H. Kim et al. (2009). Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions. Current Applied Physics, 9, 119-123.
5 J. C. Maxwell. (1873). Electricity and Magnetism, Clarendon Press, Oxford, UK
6 S. U. S. Choi. (1995). Enhancing thermal conductivity of fluid with nanoparticles. Developments and Applications of Non-Newtonian Flow. ASME, FED 231/MD, 66, 99-105.
7 S. Lee, S. U. S. Choi, S. Li & J. A. Eastman. (1999). Measuring thermal conductivity of fluids containing oxide nanoparticles, J. Heat Transf, 121, 280-289.   DOI
8 H. Masuda, A. Ebata, K. Teramae & N. Hishinuma. (1993). Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles (Dispersions Of -Al2O3, SiO2, and TiO2 Ultra-Fine Particles). Netsu Bussei (Japan), 4, 227-233.
9 Y. M. Xuan & Q. Li. (2000). Heat transfer enhancement of nanofluids. Int. J. Heat Transfer, 21, 58-64.
10 Y. M. Xuan & W. Roetze. (2000). Conceptions for heat transfer correlation of nanofluids, Int. J. Heat Mass Transf. 43, 3701-3707.   DOI
11 P. Keblinski, S. R. Phillpot, S. U. S. Choi & J. A. Eastman. (2002). Mechanisms of heat flow in suspensions of nano-sized particles (nanofluid), Int. J. Heat Mass Transf, 45, 855-863.   DOI
12 B. C. Pak & Y. I. Cho. (1998). Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transfer, 11, 151-170.   DOI
13 U. Rea, T. McKrell, L. Hu & J. Buongiorno. (2009). Laminar convective heat transfer and viscous pressure loss of alumina-water and zirconia-water nanofluids. Int. J. Heat Mass Transf, 52, 2042-2048.   DOI
14 Y. Ding & D. Wen. (2005). Particle migration in a flow of nanoparticle suspensions. Powder Technol. 149, 84-92.   DOI
15 S. Mirmasoumi & A. Behzadmehr. (2008). Effect of nanoparticles mean diameter on mixed convection heat transfer of a nanofluid in a horizontal tube. Int. J. Heat Fluid Flow, 29, 557-566.   DOI
16 S. E. B. Maiga, S. J. Palm, C. T. Nguyen, G. Roy & N. Galanis. (2005). Heat Transfer Enhancement by Using Nanofluids in Forced Convection Flows. Int. J. Heat and Fluid Flow, 26(4), 530-546.   DOI
17 H. K. Choi & G. J. Yoo. (2014). Numerical study on nanofluids forced convection in circular tubes. J. Comput. Fluids Eng, 19, 37-43.
18 H. K. Choi & Y. S. Lim. (2019). Numerical study of mixed convection nanofluid in horizontal tube. J. of Convergence for Information Technology, 9, 155-163.
19 A. Behzadmehr, M. Saffar-Avval & N. Galanis. (2007) Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two-phase approach. Int. J. Heat Fluid Flow, 28, 211-219.   DOI
20 S. C. Gupta & V. K. Garg. (1981). Developing flow in a concentric annulus. Comput. Meth. Appl. Mech. 28, 27-35.   DOI
21 M. A. I. El-Shaarawiy & M. K. Alkam. (1992). Transient forced convection in the entrance region of concentric annuli. Int. J. Heat Mass Transf. 35, 3335-3344.   DOI
22 G. Lu & J. Wang. (2008). Experimental investigation on heat transfer characteristics of water flow in a narrow annulus. Appl. Therm. Eng. 28 , 8-13.   DOI
23 A. N. S. Y. S. Fluent. (2019). ANSYS Fluent User Guide V.19.1, Southpointe : ANSYS, Inc.