• Title/Summary/Keyword: Base Shell

Search Result 112, Processing Time 0.027 seconds

A STUDY OF OPTIMUM DESIGN OF AXISYMMETRICALLY LOADED CONICALL SHELL (축대칭 하중을 받는 원추Shell의 최적설계에 관한 연구)

  • Choi, Yeol;Kang, Moon-Myung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.106-112
    • /
    • 1993
  • This paper presents the optimum design of reinforced concrete conical shell which is fixed at the base and free at the top. The calculation of stresses is done using the SMAP(Segmented Matrix Analysis Package)program which uses the simple finite element method of analysis. The objective function contains the ratios of the unit cost of reinforcements and formwork to that of concrete. To Simplify the optimization procedure, the final optimum design of conical shell is obtained by combining the result of each element. The results are presented and discussed.

  • PDF

Highly Sensitive and Selective Trimethylamine Sensor Using Yolk-shell Structured Mo-doped Co3O4 Spheres

  • Kim, Tae-Hyung;Kim, Ki Beom;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.271-276
    • /
    • 2019
  • Pure and 0.5, 1, 2, 5, and 10 at% of Mo-doped $Co_3O_4$ yolk-shell spheres were synthesized by ultrasonic spray pyrolysis of droplets containing Co nitrate, ammonium molybdate, and sucrose and their gas sensing characteristics to 5 ppm trimethylamine (TMA), ethanol, p-xylene, toluene, ammonia, carbon monoxide, and benzene were measured at $225-325^{\circ}C$. The sensor using pure $Co_3O_4$ yolk-shell spheres showed the highest response to p-xylene and very low response to TMA at $250^{\circ}C$, while the doping of Mo into $Co_3O_4$ tended to increase the overall responses of gas sensors. In particular, the sensor using 5 at% Mo-doped $Co_3O_4$ yolk-shell spheres exhibited the high response to TMA with low cross-responses to other interfering gases. The high response and selectivity of Mo-doped $Co_3O_4$ yolk-shell spheres to TMA are attributed to the electronic sensitization by higher valent Mo doping and acid-base interaction between TMA and Mo components.

An Analysis of Hemisphere-cylindrical Shell Structure by Transfer Matrix Method (전달행렬법에 의한 반구 원통형 쉘구조의 해석)

  • 김용희;이윤영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.4
    • /
    • pp.115-125
    • /
    • 2003
  • Shell structures are widely used in a variety of engineering application, and mathematical solution of shell structures are available only for a few special cases. The solution of shell structure is more complicated when it has such condition as winkler foundation, other problems. In this study many simplified methods (analogy of beam on elastic foudation, finite element method and transfer matrix method) are applied to analyze a hemisphere-cylindrical shell structures on elastic foundation. And the transfer matrix method is extensively used for the structural analysis because of its merit in the theoretical backgroud and applicability. Therefore, this paper presents the analysis of hemisphere-cylindrical shell structure base on the transfer matrix method. The technique is attractive for implementation on a numerical solution by means of a computer program coded in FORTRAN language with a few elements. To demonstrate this fact, it gives good results which compare well with finite element method.

A Disign Expert System : Support of the Ship Structural Design by a General-Purpose Shell (설계 전문가시스템 : 법용 셸을 이용한 선박구조설계의 지원)

  • 한순흥;이효섭;이동곤
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.777-784
    • /
    • 1994
  • A design expert system for the ship structural design is developed to support inexperienced designers. To establish the knowledge-base, an expert system development shell, Nexpert, is used. Knowledge is extracted from the rules of a classification society of ships, and also from an existing ship structural program that is being used by ship designers. This knowledge is systematized using the objectoriented concept. The design support system is constructed by adding additional functions which are required for the conventional engineering design work. Added functions are; calculation of longitudinal strength, database of existing ship designs, graphical user interface, and visualization of design results. It is observed that visualizing the relationships among the rules, which are activated to draw a certain design decision, is helpful. The system can easily be updated according to changes of the rule books of ship classification societies.

Buckling Strength of Cylindrical Shell Subjected to Axial Loads (축하중을 받는 원통형 쉘의 좌굴강도)

  • Kim, Seung Eock;Choi, Dong Ho;Lee, Dong Won;Kim, Chang Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.2
    • /
    • pp.191-200
    • /
    • 2001
  • This paper presents buckling analysis of the cylindrical shell subjected to axial loads using numerical method. The modeling method, appropriate element type, and number of element are recommended by comparing with analytical solution. Based on the parametric study, buckling stress decreases significantly as the diameter-thickness ratio increases. These results are different from those obtained from buckling analysis of columns. The number of buckling half-wave in circumferential direction decreases as the diameter-height ratio increases. Buckling stress increases 1~2% as the thickness of base plate increases. Therefore the effect of base plate on buckling strength for cylindrical shell can be disregarded. Buckling stress significantly decreases as the amplitude of initial geometric imperfection used for calculating buckling stress is developed and it shows a good agreement with numerical results.

  • PDF

Dynamic response of layered hyperbolic cooling tower considering the effects of support inclinations

  • Asadzadeh, Esmaeil;Alam, Mehtab;Asadzadeh, Sahebali
    • Structural Engineering and Mechanics
    • /
    • v.50 no.6
    • /
    • pp.797-816
    • /
    • 2014
  • Cooling tower is analyzed as an assembly of layered nonlinear shell elements. Geometric representation of the shell is enabled through layered nonlinear shell elements to define the different layers of reinforcements and concrete by considering the material nonlinearity of each layer for the cooling tower shell. Modal analysis using Ritz vector analysis and nonlinear time history analysis by direct integration method have been carried out to study the effects of the inclination of the supporting columns of the cooling tower shell on its dynamic characteristics. The cooling tower is supported by I-type columns and ${\Lambda}$-type columns supports having the different inclination angles. Relevant comparisons of the dynamic response of the structural system at the base level (at the junction of the column and shell), throat level and at the top of the tower have been made. Dynamic response of the cooling tower is found to be significantly sensitive to the change of the inclination of the supporting columns. It is also found that the stiffness of the structure system increases with increase in inclination angle of the supporting columns, resulting in decrease of the period of the structural system. The participation of the stiffness of the tower in structural response of the cooling tower is fund to be dependent of the change in the inclination angle and even in the types of the supporting columns.

Evaluation of Structural Performance of Natural Draught Cooling Tower According to Shell Geometry Using Wind Damage Analysis - Part II : Two-Shell Geometry (풍하중에 의한 손상해석을 이용한 기하형상에 따른 자연 습식 냉각탑의 구조성능 평가 - Part II : Two-Shell 기하형상)

  • Lee, Sang-Yun;Noh, Sam-Young
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.1
    • /
    • pp.49-58
    • /
    • 2017
  • The result of the previous work leads to the idea that the inner area of the hyperbolic shell generator should be minimized for the cooling tower with higher first natural frequency. In this study the inner area of the hyperbolic shell generator was graphically established under varying height of the throat and angle of the base lintel. From the graph, several shell geometries were selected and analysed in the aspect of the natural frequency. Three representative towers reinforced differently due to different first natural frequencies were analysed non-linearly and evaluated using a damage indicator based on the change of natural frequencies. The results demonstrated that the damage behaviour of the tower reinforced higher due to a lower first natural frequency was not necessarily advantageous than the others.

Integration of Geometrically Exact Shell Finite Element With Trimmed Surface Modeling base on the NURBS (기하학적으로 정확한 셀 유한요소와 NURBS기반의 Trimmed Surface 모델링과의 연동)

  • Choi Jin-Bork;Roh Hee-Yuel;Cho Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.794-801
    • /
    • 2006
  • The linkage framework of geometric modeling and analysis based on the NURBS technology is developed in this study. The NURBS surfaces are generated by interpolating the given set of data points or by extracting the necessary information to construct the NURBS surface from the IGES format file which is generated by the commercial CAD systems in the present study. Numerical examples shows the rate of displacement convergence according to the paramterization methods of the NURBS surface. NURBS can generate quadric surfaces in an exact manner. It is the one of the advantages of the NURBS. A trimmed NURBS surface that is often encountered in the modeling process of the CAD systems is also presented in the present study. The performance of the developed geometrically exact shell element integrated with the exact geometric representations by the NURBS equation is compared to those of the previous reported FE shell elements in the selected benchmark problems.

  • PDF

Free Vibration Analysis of Circular Cylindrical Shell Structures with Elastic Supports by the Transfer Influence Coefficient Method (전달영향계수법에 의한 탄성지지를 갖는 원통형 셀구조물의 자유진동해석)

  • 문덕홍;여동준
    • Journal of KSNVE
    • /
    • v.4 no.4
    • /
    • pp.469-478
    • /
    • 1994
  • This paper desfcribes the formulation for the analysis of the free vibration of a circular cylindrical shell with elastic supports by the transfer influence coefficient method. This method was developed on the base of the concept of the successive transmission of dynamic influence coefficients. The analysis algorithm for circular cylindrical shell elastically restrained by springs, which plays an important role in many industrial fields, is discussed. The supporting springs have the axial, circumferential, radial and rotational spring constants uniformly distributed along the circumference of the shell. The simple computational results on a personal computer demonstrate the validity of the present method, that is, the numerical high accuracy, the high speed analysis method and the flexibility for programming, compared with results of the transfer matrixmethod and reference. We also confirmed that the present algorithm could obtain the solutions of high accuracy for system with a number of intermediate rigid supports. And we could easily treat the intermediate support and all boundary conditions by adequately varying the values of spring constants.

  • PDF

A Design Support System for the Structural Design of Ships Based on an Expert System Development Shell (범용 전문가시스템 쉘을 이용한 선박의 구조설계 지원 시스템)

  • Han, Soon-Hung;Lee, Kyung-Ho;Lee, Dong-Kon;Kim, Eun-Ki;Lee, Kyu-Chul
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.19 no.2
    • /
    • pp.83-93
    • /
    • 1993
  • Conventional computer programs developed and used by practicing engineers can be considered to contain expert knowledge and design experience. If these conventional programs are converted into expert systems, the difficult and time consuming process of knowledge acquisition can be simplified. Also the constructed knowledge-base can have higher confidence level than that constructed by the usual knowledge acquisition method of interviews. An existing computer program which is being used by ship structural designers has been reformulated as a design expert system by applying an expert system development shell-Nexpert. Utilizing the callable interface provided by the development shell, external design tools have also been integrated. The interfaced external functions are a graphical user interface (GUI) for the design process control, and graphics functions for the visualization of design results. It is observed that the developed system for design support is useful in two aspects. The trace-back function shows what portion of design rules are applied in arriving at certain design decisions. Also the knowledge-base can be conveniently updated as design rules of the classification societies are updated.

  • PDF