• 제목/요약/키워드: Bang-Bang Control

검색결과 1,148건 처리시간 0.035초

Spacecraft Attitude Control with a Two-axis Variable Speed Control Momentum Gyro

  • Bang, Hyo-Choong;Park, Young-Woong;Lee, Jung-Shin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1747-1753
    • /
    • 2004
  • CMG(Control Momentum Gyro) is a control device being used for spacecraft attitude control constructing relatively large amount of torque compared to conventional body-fixed reaction wheels. The CMG produces gyroscopic control torque by continuously varying the angular momentum vector direction with respect to the spacecraft body. The VSCMG(Variable Speed Control Momentum Gyro) has favorable advantages with variable speed to lead to better control authority as well as singularity avoidance capability. Attitude dynamics with a VSCMG mounted on a two-axis gimbal system are derived in this study. The dynamic equation may be considered as an extension of the single-axis counterpart. Also, a feedback control law design is addressed in conjunction with the dynamic equations of motion.

  • PDF

A Study on Predictive Fuzzy Control Algorithm for Elevator Group Supervisory System (엘리버이터 군관리 시스템을 위한 예견퍼지 제어 알고리즘에 관한 연구)

  • Choi, Don;Park, Hee-Chul;Woo, Kang-Bang
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • 제43권4호
    • /
    • pp.627-637
    • /
    • 1994
  • In this study, a predictive fuzzy control algorithm to supervise the elevator system with plural cars is developed and its performance is evaluated. The proposed algorithm is based on fuzzy in-ference system to cope with multiple control objects and uncertainty of system state. The control objects are represented as linguistic predictive fuzzy rules and simplified reasoning method is utilized as a fuzzy inference method. Real-time simulation is performed with respect o all possible modes of control, and the resultant controls ard predicted. The predicted rusults are then utilized as the control in-puts of the fuzzy rules. The feasibility of the proposed control algorithm is evaluated by graphic simulator on computer. Finallu, the results of graphic simulation is compared with those of a conventional group control algorighm.

  • PDF

Predictive Spacecraft Attitude Control under External Disturbances

  • Sam, Myung-Hyun;Suk, Oh-Choong;Choong, Bang-Hyo;Jea, Tahk-Min
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.62.3-62
    • /
    • 2001
  • The predictive control is one of the nonlinear three-axis rotation methods. The desired trace of a satellite is pre-determined, and the control inputs are designed so that the satellite follows the ´predictive´ trace. The predictive control has been adapted to the research for the three-axis attitude control. In that case, the control variables are the quaternion represented the angular rates and attitude angles of the body about the three-axes. The objective of this paper is to propose to design a predictive controller for the three-axis attitude control under external disturbances. In order to do that, this paper proposes how to construct a predictive control law including disturbances and to discern them. The basic algorithm of the existent predictive control is partially modified, and the presumption and modeling of disturbances are performed ...

  • PDF

PID and adaptive learning control for engine air-fuel control system (PID 및 적응학습 제어기법을 이용한 자동화 엔진의 공기-연료비 제어시스템 연구)

  • Lee, Deong-Kyoo;Choi, Don;Woo, Kwang-Bang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.658-662
    • /
    • 1990
  • In the air-fuel control of automotive engine to improve its efficiency, fuel economy and less emissions, conventional control methods using $O_{2}$ sensor or the lean air-fuel ratio sensor provide only open control in rich conditions. Control with a wide range air-fuel sensor makes it possible to employ closed loop control for all engine conditions including rich combustion. With a wide range A/F sensor and A/F transfer functions, a PID control system is constructed which employs an learning scheme. A/F controller is designed which enables to improve the ability of its compensation for sensors and actuators, and its control operation is evaluated by computer simulation.

  • PDF

Aircraft Waypoint Navigation Control with Neural Network-Based Altitude-Hold Control

  • Lee, Hyunjae;Bang, Hyochoong;Lee, Eunhee;Hong, Chang-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제2권1호
    • /
    • pp.93-102
    • /
    • 2001
  • Flight control design for the autonomous waypoint navigation of aircraft is presented in this study. The waypoints are defined in terms of desired longitude and latitude. The control design is conducted in longitudinal and lateral directions, respectively. The lateral control is based upon coordinated turn strategy for which no sideslip is allowed under the turning maneuver. The longitudinal control is mainly focused on altitude hold during navigation. Neural network control approach is applied to the altitude-hold mode control. Simulation of the proposed control strategy has been performed under various conditions. A graphical simulation tool was developed to visually demonstrate the control technique developed in this study. A method to simulate the gas turbine transient behavior is developed. The basic principles of the method.

  • PDF

Development of Distribution Superconducting Fault Current Limiter and its Monitoring System for Power IT Application (배전급 초전도한류기 및 전력 IT 응용을 위한 실시간 모니터링 시스템 개발)

  • Park, Dong-Keun;Seok, Bok-Yeol;Ko, Tae-Kuk;Kang, Hyoung-Ku
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제57권3호
    • /
    • pp.398-402
    • /
    • 2008
  • Recently, the development of superconducting fault current limiters (SFCLs) has been required as power demands increase in the power system. A distribution-level prototype resistive SFCL using coated conductor (CC) has been developed by Hyundai Heavy Industries Co., Ltd. and Yonsei University for the first time in the world. The ratings of the SFCL are 13.2kV/630A at normal operating condition. A novel non-inductive winding method is used in fabricating coils so there is almost zero impedance during normal operation. The distribution SFCL is cooled by sub-cooled liquid nitrogen $(LN_2)$ of 65K and 3 bar to enhance cryo-dielectric performance, critical current density, and thermal conductivity. In order to make reliable operation of an SFCL in real power systems, we monitored and controled its operation conditions by using supervisory control and data acquisition (SCADA) method. Thus, a monitoring system for the SFCL employing information technology (IT) is proposed and developed to be on the lookout for the operation conditions such as inside temperature, inside pressure, $LN_2$ level, voltage and current. Since operation temperature should be kept constant, bang-bang control for temperature feedback with a heater attached to the cold head of cryo-cooler is applied to the system. Short-circuit tests with prospective fault current of 10kA and AC dielectric withstand voltage tests up to 143kV for 1 minute were successfully performed at Korea Electrotechnology Research Institute. This paper deals with the development of a distribution level SFCL and its monitoring system for reliable operation.

Control of Small Scale Rotary Wing Unmanned Aerial Vehicle (R-UAV) Using Backstepping.

  • Kannan, Somasundar;Lian, Bao-Hua;Hwang, Tae-Won;Bang, Hyo-Choong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1005-1007
    • /
    • 2005
  • A Nonlinear approach to control of Small Scale Rotary Wing Unmanned Aerial Vehicle (R-UAV) is presented. Using Backstepping, a globally stabilizing control law is derived. We derive backstepping control law for angle of attack and sideslip control. The inherent nonlinear nature of the system are considered here which helps in naturally stabilizing without extensive external effort. Thus, the resulting control law is much simpler than if the feedback linearization had been used.

  • PDF

A Study on the Improvement of Control System Performance of Drum Boiler (드럼보일러의 제어성 개선에 관한 연구)

  • Seon, Yang-Rae;Bang, Si-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제5권2호
    • /
    • pp.43-55
    • /
    • 1988
  • The control system of a drum boiler is very complex since the evaporization process in the boiler is a multivariable system which is affected one another. This study is concerned with the dynamic characteristics of the boiler process and improving methods of performance of a drum boiler control system. The PID control with feedforward of disturbances and the optimal regulator are compared, and the effects of control parameters on the performance of a boiler control system are investigated. From simulation, it is found that profer adjustment of control parameters significant improvement of response and that performance of a optimal regulated control system is better than that of a conventional PID control system.

  • PDF

Attitude Maneuver Control of Flexible Spacecraft by Observer-based Tracking Control

  • Hyochoong Bang;Oh, Choong-Seok
    • Journal of Mechanical Science and Technology
    • /
    • 제18권1호
    • /
    • pp.122-131
    • /
    • 2004
  • A constraint equation-based control law design for large angle attitude maneuvers of flexible spacecraft is addressed in this paper The tip displacement of the flexible spacecraft model is prescribed in the form of a constraint equation. The controller design is attempted in the way that the constraint equation is satisfied throughout the maneuver. The constraint equation leads to a two-point boundary value problem which needs backward and forward solution techniques to satisfy terminal constraints. An observer-based tracking control law takes the constraint equation as the input to the dynamic observer. The observer state is used in conjunction with the state feedback control law to have the actual system follow the observer dynamics. The observer-based tracking control law eventually turns into a stabilized system with inherent nature of robustness and disturbance rejection in LQR type control laws.

Sliding Mode Attitude Control for Momentum-Biased Spacecraft

  • Bang, Hyo-Choong;Loh, Young-Hwan
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제3권2호
    • /
    • pp.13-23
    • /
    • 2002
  • In this paper, we present a sliding mode control strategy for the re-orientation maneuver of rigid spacecraft containing rotating wheels. The wheels are considered as internal devices, and external inputs are employed for generation of control commands. The formulation is developed for a general case while particular example is applied to pitch bias momentum spacecraft with a single momentum wheel. The resultant control commands are used to take the gyroscopic effects into account which are caused by the rotating wheels. The controller designed demonstrates that the nutational motion of the pitch bias momentum spacecraft is effectively controlled. It is also assumed that the external control torque device is of on-off nature, and pulse width modulation technique is applied to construct proper control torque history.