• Title/Summary/Keyword: Bandwidth usage

Search Result 150, Processing Time 0.019 seconds

An Efficient Pre-Fetching Service for Multi-media Server based on Disc Partition Scheduling (멀티미디어 서버에서 효율적인 선반입 서비스를 위한 디스크 파티션 스케쥴링)

  • Choi Sung-Wook
    • Journal of the Korea Computer Industry Society
    • /
    • v.6 no.3
    • /
    • pp.379-390
    • /
    • 2005
  • Intensive studies have been made in the area of VOD server Multimedia files in the VOD sever are characterized with the large volume of data, the requirements of synchronization and real-time playback of streams. The basic goal of the study is to find an efficient mechanism to allow maximum number of users under the limited resources such as Buffer size and disk bandwidth. we propose a efficient $pre\_fetching$ policy for multimedia services with dynamic monitoring and management of VOD sever resources. Simulation results show that the rate of buffer usage and service time of proposed scheme are about $28\%$ performance improved than that of traditional methods. This implies that our method can allow much more users for given resources.

  • PDF

Emerging Technologies for Sustainable Smart City Network Security: Issues, Challenges, and Countermeasures

  • Jo, Jeong Hoon;Sharma, Pradip Kumar;Sicato, Jose Costa Sapalo;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.15 no.4
    • /
    • pp.765-784
    • /
    • 2019
  • The smart city is one of the most promising, prominent, and challenging applications of the Internet of Things (IoT). Smart cities rely on everything connected to each other. This in turn depends heavily on technology. Technology literacy is essential to transform a city into a smart, connected, sustainable, and resilient city where information is not only available but can also be found. The smart city vision combines emerging technologies such as edge computing, blockchain, artificial intelligence, etc. to create a sustainable ecosystem by dramatically reducing latency, bandwidth usage, and power consumption of smart devices running various applications. In this research, we present a comprehensive survey of emerging technologies for a sustainable smart city network. We discuss the requirements and challenges for a sustainable network and the role of heterogeneous integrated technologies in providing smart city solutions. We also discuss different network architectures from a security perspective to create an ecosystem. Finally, we discuss the open issues and challenges of the smart city network and provide suitable recommendations to resolve them.

A Secure, Hierarchical and Clustered Multipath Routing Protocol for Homogenous Wireless Sensor Networks: Based on the Numerical Taxonomy Technique

  • Hossein Jadidoleslamy
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.121-136
    • /
    • 2023
  • Wireless Sensor Networks (WSNs) have many potential applications and unique challenges. Some problems of WSNs are: severe resources' constraints, low reliability and fault tolerant, low throughput, low scalability, low Quality of Service (QoS) and insecure operational environments. One significant solution against mentioned problems is hierarchical and clustering-based multipath routing. But, existent algorithms have many weaknesses such as: high overhead, security vulnerabilities, address-centric, low-scalability, permanent usage of optimal paths and severe resources' consumption. As a result, this paper is proposed an energy-aware, congestion-aware, location-based, data-centric, scalable, hierarchical and clustering-based multipath routing algorithm based on Numerical Taxonomy technique for homogenous WSNs. Finally, performance of the proposed algorithm has been compared with performance of LEACH routing algorithm; results of simulations and statistical-mathematical analysis are showing the proposed algorithm has been improved in terms of parameters like balanced resources' consumption such as energy and bandwidth, throughput, reliability and fault tolerant, accuracy, QoS such as average rate of packet delivery and WSNs' lifetime.

Acceleration of computation speed for elastic wave simulation using a Graphic Processing Unit (그래픽 프로세서를 이용한 탄성파 수치모사의 계산속도 향상)

  • Nakata, Norimitsu;Tsuji, Takeshi;Matsuoka, Toshifumi
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.1
    • /
    • pp.98-104
    • /
    • 2011
  • Numerical simulation in exploration geophysics provides important insights into subsurface wave propagation phenomena. Although elastic wave simulations take longer to compute than acoustic simulations, an elastic simulator can construct more realistic wavefields including shear components. Therefore, it is suitable for exploration of the responses of elastic bodies. To overcome the long duration of the calculations, we use a Graphic Processing Unit (GPU) to accelerate the elastic wave simulation. Because a GPU has many processors and a wide memory bandwidth, we can use it in a parallelised computing architecture. The GPU board used in this study is an NVIDIA Tesla C1060, which has 240 processors and a 102 GB/s memory bandwidth. Despite the availability of a parallel computing architecture (CUDA), developed by NVIDIA, we must optimise the usage of the different types of memory on the GPU device, and the sequence of calculations, to obtain a significant speedup of the computation. In this study, we simulate two- (2D) and threedimensional (3D) elastic wave propagation using the Finite-Difference Time-Domain (FDTD) method on GPUs. In the wave propagation simulation, we adopt the staggered-grid method, which is one of the conventional FD schemes, since this method can achieve sufficient accuracy for use in numerical modelling in geophysics. Our simulator optimises the usage of memory on the GPU device to reduce data access times, and uses faster memory as much as possible. This is a key factor in GPU computing. By using one GPU device and optimising its memory usage, we improved the computation time by more than 14 times in the 2D simulation, and over six times in the 3D simulation, compared with one CPU. Furthermore, by using three GPUs, we succeeded in accelerating the 3D simulation 10 times.

An ABR Rate-based Control Scheme Avoiding Access Point Buffer Overflow and Underflow during Handoffs in Wireless ATM Networks (무선 ATM망에서 핸드오프시 접속점 버퍼 오버플로우와 언더플로우를 방지하는 ABR 전송률 기반 제어 방안)

  • Ha, In-Dae;Oh, Jung-Ki;Park, Sang-Joon;Choi, Myung-Whan
    • Journal of KIISE:Information Networking
    • /
    • v.28 no.4
    • /
    • pp.527-539
    • /
    • 2001
  • The wireless asynchronous transfer mode (ATM) system has the advantage of providing the broadband services with various quality-of-service requirements to the mobile terminal efficiently by utilizing the ATM technology developed for the wired ATM system. The available bit rate (ABR) service among various ATM services utilizes the available bandwidth remaining in the ATM link, which allows the efficient bandwidth usage. During the handoff of the mobile terminal, however, the queue length in the access point (AP) which resides in the boundary of the wired ATM network and the wireless ATM network may increase abruptly. In this paper, we propose a scheme which prevents the buffer-overflow and buffer-underflow in the AP during the handoff of the wireless ABR connection in the wireless ATM system using binary feedback rate-based ABR traffic control. This scheme controls the source's cell generation rate during both handoff period and some time interval after the completion of the handoff procedure. The simulation results show that the proposed scheme prevents the buffer-overflow and buffer-underflow. The proposed scheme can contribute to increasing the throughput of the wireless ABR service during handoff by preventing the buffer overflow and underflow during handoff period.

  • PDF

An Efficient TCP Buffer Tuning Algorithm based on Packet Loss Ratio(TBT-PLR) (패킷 손실률에 기반한 효율적인 TCP Buffer Tuning 알고리즘)

  • Yoo Gi-Chul;Kim Dong-kyun
    • The KIPS Transactions:PartC
    • /
    • v.12C no.1 s.97
    • /
    • pp.121-128
    • /
    • 2005
  • Tho existing TCP(Transmission Control Protocol) is known to be unsuitable for a network with the characteristics of high RDP(Bandwidth-Delay Product) because of the fixed small or large buffer size at the TCP sender and receiver. Thus, some trial cases of adjusting the buffer sizes automatically with respect to network condition have been proposed to improve the end-to-end TCP throughput. ATBT(Automatic TCP fluffer Tuning) attempts to assure the buffer size of TCP sender according to its current congestion window size but the ATBT assumes that the buffer size of TCP receiver is maximum value that operating system defines. In DRS(Dynamic Right Sizing), by estimating the TCP arrival data of two times the amount TCP data received previously, the TCP receiver simply reserves the buffer size for the next arrival, accordingly. However, we do not need to reserve exactly two times of buffer size because of the possibility of TCP segment loss. We propose an efficient TCP buffer tuning technique(called TBT-PLR: TCP buffer tuning algorithm based on packet loss ratio) since we adopt the ATBT mechanism and the TBT-PLR mechanism for the TCP sender and the TCP receiver, respectively. For the purpose of testing the actual TCP performance, we implemented our TBT-PLR by modifying the linux kernel version 2.4.18 and evaluated the TCP performance by comparing TBT-PLR with the TCP schemes of the fixed buffer size. As a result, more balanced usage among TCP connections was obtained.

Data processing techniques applying data mining based on enterprise cloud computing (데이터 마이닝을 적용한 기업형 클라우드 컴퓨팅 기반 데이터 처리 기법)

  • Kang, In-Seong;Kim, Tae-Ho;Lee, Hong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.8
    • /
    • pp.1-10
    • /
    • 2011
  • Recently, cloud computing which has provided enabling convenience that users can connect from anywhere and user friendly environment that offers on-demand network access to a shared pool of configurable computing resources such as smart-phones, net-books and PDA etc, is to be watched as a service that leads the digital revolution. Now, when business practices between departments being integrated through a cooperating system such as cloud computing, data streaming between departments is getting enormous and then it is inevitably necessary to find the solution that person in charge and find data they need. In previous studies the clustering simplifies the search process, but in this paper, it applies Hash Function to remove the de-duplicates in large amount of data in business firms. Also, it applies Bayesian Network of data mining for classifying the respect data and presents handling cloud computing based data. This system features improved search performance as well as the results Compared with conventional methods and CPU, Network Bandwidth Usage in such an efficient system performance is achieved.

Design and Performance Analysis of Dynamic QoS Control for RTP-based Multimedia Data Transmission (RTP 기반 멀티미디어 데이터 전송을 위한 동적 QoS 제공방안의 설계 및 성능 분석)

  • Moon, Young-Jun;Ryoo, In-Tae;Park, Gwang-Hoon
    • The KIPS Transactions:PartC
    • /
    • v.10C no.7
    • /
    • pp.891-898
    • /
    • 2003
  • This paper analyzes and proposes a scheme that improves the performance of the RTP that is developed to support the end-to-end transmission function and QoS monitor function for real-time multimedia data transmission. Although the existing RTP module supports real-time transmission, it has some problems in guaranteeing QoS parameters. To solve this problem, we propose a new Selective Repeat Adaptive Rate Control (SRARC). The SRARC can support QoS by referring to the data transmission status from the client and then classifying the network status into three levels. It selectively transmits multimedia data and dynamically controls transmission rates based on such information as bandwidth, packet loss rate, and latency that can be calculated in data transfer phase. To verify the SRARC, we implement it in real local area networks and compare the QoS parameters of the SRARC with those of the SR and RTP By the experimental results, the SRARC shows better performance in the aspects of bandwidth usage rate, packet loss rates, and transmission delays than the existing RTP schemes.

A Mode Switching Protocol between RVOD and NVOD for Efficient VOD Services (효율적인 VOD 서비스를 위한 RVOD와 NVOD간의 전환 프로토콜)

  • Kim, Myoung-Hoon;Park, Ho-Hyun
    • The KIPS Transactions:PartA
    • /
    • v.15A no.4
    • /
    • pp.227-238
    • /
    • 2008
  • Recently, as network environment has broadened, the demands on VOD have been increased. The VOD services can be categorized into two types, RVOD and NVOD. Practical VOD services adopt one of them exclusively. Since a method using only one of RVOD and NVOD is not able to deal with frequently variable demand of clients, it leads to a result of overload on a server and a waste of server bandwidth. The efficiency of the network resource usage becomes lower. Hence this paper presents a study on the protocol for efficient VOD services. We propose a new protocol appliable for the existing VOD service algorithm, analyze its performance through simulation, and developed server/client systems applying the new protocol. We propose a mode switching protocol combined with protocols used in RVOD and NVOD. The proposed protocol is not able only to control both RVOD and NVOD but also to change the mode between RVOD and NVOD. As a result of using the proposed protocol to meet frequently variable demand, server bandwidth can be used efficiently. Especially, it can be applied to the existing VOD service algorithms. Therefore, we expect that the proposed protocol in this paper will be widely used in emerging VOD markets.

An Energy-Efficient Concurrency Control Method for Mobile Transactions with Skewed Data Access Patterns in Wireless Broadcast Environments (무선 브로드캐스트 환경에서 편향된 엑세스 패턴을 가진 모바일 트랜잭션을 위한 효과적인 동시성 제어 기법)

  • Jung, Sung-Won;Park, Sung-Geun;Choi, Keun-Ha
    • Journal of KIISE:Databases
    • /
    • v.33 no.1
    • /
    • pp.69-85
    • /
    • 2006
  • Broadcast has been often used to disseminate the frequently requested data efficiently to a large volume of mobile clients over a single or multiple channels. Conventional concurrency control protocols for mobile transactions are not suitable for the wireless broadcast environments due to the limited bandwidth of the up-link communication channel. In wireless broadcast environments, the server often broadcast different data items with different frequency to incorporate the data access patterns of mobile transactions. The previously proposed concurrency control protocols for mobile transactions in wireless broadcast environments are focused on the mobile transactions with uniform data access patterns. However, these protocols perform poorly when the data access pattern of update mobile transaction are not uniform but skewed. The update mobile transactions with skewed data access patterns will be frequently aborted and restarted due 4o the update conflict of the same data items with a high access frequency. In this paper, we propose an energy-efficient concurrence control protocol for mobile transactions with skewed data access as well as uniform data access patterns. Our protocol use a random back-off technique to avoid the frequent abort and restart of update mobile transactions. We present in-depth experimental analysis of our method by comparing it with existing concurrency control protocols. Our performance analysis show that it significantly decrease the average response time, the amount of upstream and downstream bandwidth usage over existing protocols.