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Abstract. Numerical simulation in exploration geophysics provides important insights into subsurface wave propagation
phenomena. Although elastic wave simulations take longer to compute than acoustic simulations, an elastic simulator can
construct more realistic wavefields including shear components. Therefore, it is suitable for exploration of the responses
of elastic bodies. To overcome the long duration of the calculations, we use a Graphic Processing Unit (GPU) to accelerate
the elastic wave simulation. Because a GPU has many processors and a wide memory bandwidth, we can use it in a
parallelised computing architecture. The GPU board used in this study is an NVIDIA Tesla C1060, which has 240
processors and a 102 GB/s memory bandwidth. Despite the availability of a parallel computing architecture (CUDA),
developed by NVIDIA, we must optimise the usage of the different types of memory on the GPU device, and the sequence
of calculations, to obtain a significant speedup of the computation. In this study, we simulate two- (2D) and three-
dimensional (3D) elastic wave propagation using the Finite-Difference Time-Domain (FDTD) method on GPUs. In the wave
propagation simulation, we adopt the staggered-grid method, which is one of the conventional FD schemes, since this
method can achieve sufficient accuracy for use in numerical modelling in geophysics. Our simulator optimises the usage of
memory on the GPU device to reduce data access times, and uses faster memory as much as possible. This is a key factor in
GPU computing. By using one GPU device and optimising its memory usage, we improved the computation time by
more than 14 times in the 2D simulation, and over six times in the 3D simulation, compared with one CPU. Furthermore, by

using three GPUs, we succeeded in accelerating the 3D simulation 10 times.
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Introduction

In seismic exploration, the simulation of wave propagation is a
useful tool for understanding wave phenomena in subsurface
structures (e.g. diffraction patterns, refractions and reflections
from boundaries). We construct a structure model from a priori
geological information and simulate wave propagation to
understand the seismic wave responses (e.g. Juhlin, 1995).
Applications of simulations are evident in various fields such
as the design of receiver arrays or source points for optimal
acquisition geometry, inversion, migration, confirming the effect
of noise, and verifying the suitability of new data processing
methods.

When we simulate wave phenomena in three-dimensional
(3D) structures, with the construction of many shot records, we
usually use a ray tracing method to reduce the computation time.
In ray tracing, we assume a high-frequency wave and estimate
wave propagation ray paths through the model (Cerveny, 2001).
Because the algorithm for this simulation is not expensive in
terms of computational resources, it is useful for practical
applications. Ray tracing cannot, however, construct
all wavefields (e.g. surface waves) together with frequency
variations.

Wave theory modelling, such as the Finite-Difference
Time-Domain (FDTD) method, was developed to enable the
construction of all wavefields including surface waves,
diffractions, and multiple scattered waves (Virieux, 1986).
Although the algorithm for FDTD is not complicated, it
requires more computation power than does ray tracing
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simulation. Despite the recent rapid improvement in computer
performance, itis difficult to complete the simulation ofa large 3D
subsurface model that might be required in normal geophysical
exploration within a practicable computational time whilst also
retaining sufficient accuracy.

In this paper, we propose algorithms to accelerate the
calculation speed by using a Graphic Processing Unit (GPU)
via CUDA, which is the computing architecture in NVIDIA
GPUs (Owens et al., 2008; Nickolls and Dally, 2010). The
GPU is usually mounted as a peripheral in a personal
computer to handle large volumes of graphical data, because
graphical data processing requires special algorithms. Recently,
however, several scientific researchers have adopted this specific
device as a scientific computational tool. The main applications of
GPU computing in scientific fields are in computational
chemistry (Stone et al., 2007), computational fluid dynamics
(Liu et al., 2004), and astrophysics (Nyland et al., 2007). In
this paper, we propose a specialised parallelisation algorithm
for a GPU, for 2D and 3D elastic wave simulations using the
FDTD method for geophysical applications.

A wave simulation usually solves the wave equation at
each time step. Acoustic and electromagnetic wave
simulations on a GPU have already been proposed by several
authors (Takada et al., 2008; Micikevicius, 2009). Although
acoustic wave simulation is useful for reverse time migration
(Abdelkhalek et al., 2009; Moussa, 2009), eclastic wave
simulation is necessary to process many types of geophysical
data such as P-SV converted waves, or to estimate the exact

10.1071/EG10039 0812-3985/11/010098



Elastic wave simulation with a GPU

Exploration Geophysics 99

reflection coefficients. Thus, the aim of this paper is to develop
algorithms to decrease the computation time whilst maintaining
high accuracy in elastic wave simulation. The characteristics of
GPU computing are high performance due to being capable of
~10 times more floating-point operations per second (flops) than
a CPU, and having 12 times more memory bandwidth than the
system memory on the motherboard, as well as conservation of
space and electric power, and low cost. The wide memory
bandwidth becomes a key factor in the FDTD program, which
needs to read and write large amounts of data.

A FDTD scheme using a staggered grid on a GPU

The hardware implementation of a GPU is quite different from
that ofa CPU. A GPU has several hundred processors and several
different kinds of memory in the form of device memory, shared
memory, constant memory, registers, etc., which differ in both
size and bandwidth (Figure 1). We can implement parallel
computing using the several hundred processors. All
processors in a GPU are basically designed to execute the
same code, so GPU computing can accelerate simple iterative
calculations effectively. Because a GPU cannot directly read the
system memory mounted on the CPU motherboard, we must
transfer data between the system memory and device memory on
the GPU board. Itis better to reduce the number of transfers of data
for GPU computing. Device memory on the GPU board has a
capacity of a few gigabytes, but the speed of a memory access is
not very fast. However, the other three kinds of memory on the
GPU chip, thatis shared memory, constant memory, and registers,
are much faster and can be used similarly to the cache memory ofa
CPU. GPU programming differs from CPU programming in that
it is necessary to declare how much on-chip memory will be
occupied by the program. Effective usage of the different types of
memory, especially shared memory, is the key factor in
accelerating processes. Because the on-chip memory is quite
fast, yet small, we must evaluate how much data can be stored in
the memory. To do this, we must understand the architecture of
the GPU and optimise our code for the specific use of the GPU
hardware.

The bottleneck in wave propagation simulation is usually
the speed of a memory access, not the operation speed of the
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Fig. 1. Schematic diagram of the hardware implementation of a GPU. The
GPU is the computation unit on a GPU board and includes processors and
memory. Device memory can be seen outside the GPU (but on the GPU
board). The numbers of multiprocessors and processors are as for the NVIDIA
Tesla C1060.

processors. Thus, optimising memory access time is the key to
decreasing computation time. The flow of data in a GPU
computation involves first copying subsurface structure data
from system memory to device memory and then from device
memory to the on-chip memory. These data can be processed in
parallel on the GPU device and the computational results are then
transferred to system memory.

In CUDA programming, the CPU acts as a host that controls
the GPU, whilst the GPU acts as a device. We need to write two
different programs, the CPU (host) code and GPU (device) code.
The code for these programs is similar to C programming codes.
Thehost code calls kernel functions, in the device code, thus using
the GPU. The concept of GPU programming is shown in Figure 2.
One kernel function constructs a single GPU-grid that includes
several blocks. A single GPU-grid runs on one GPU board,
whilst one block corresponds to the calculation range of one
multiprocessor, which has one shared memory. A thread is the
execution unit in the device code. Therefore, it is the fastest if the
number of blocks is a multiple of the number of multiprocessors,
and one thread is a multiple of the number of processors in one
multiprocessor. We can implement parallelisation by executing
the program simultaneously on several hundred processors;
the NVIDIA Tesla C1060 board used in this study has 240
processors. It is, however, difficult to speed up all kinds of
programs because of the low clock speed in each processor
and the additional memory copy time. We adapt our code for
CUDA to speed up the computation time.

In this paper, we propose 2D and 3D elastic wave simulators
using the FDTD method. Our FDTD scheme solves the stress-
strain relation and equation of motion instead of the wave
equation (Graves, 1996). We adopt a staggered-grid method
with fourth-order accuracy in the space domain and second-
order accuracy in the time domain. We are able to calculate
the waveform with higher accuracy by taking higher-order
approximations, either eighth or sixteenth order, of the
differentiation operators, although using these operators
involves a trade-off between computation speed and FD time
interval. In GPU computing, we have a small memory capacity
but high computation power. Therefore, fourth-order accuracy, a
small time interval, and many iterations are appropriate for the
GPU calculation. We simulate a semi-infinite space and apply a
free-surface boundary condition (Levander, 1988) at the upper
boundary of the subsurface model and a non-reflecting boundary
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Fig. 2. The concept of GPU programming. One thread is executed on one
processor, with one block input into one multiprocessor.
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condition (Cerjan et al., 1985) at the remaining five boundaries in
the 3D case. Ina 3D elastic simulation, the FDTD scheme requires
nine variables at each grid point: three particle velocity values
(x, v, and z components) and six stress values (xx, xy, xz, yy, yz, and
zz components). In addition, the subsurface model property
parameters are required: density and two Lame constants.

The NVIDIA Tesla C1060 has 4 GB of device memory, which
has 102 GB/s memory bandwidth, and 16 KB each of shared
memory; device memory restricts the simulation size of the GPU-
grid, and shared memory restricts that of each block, respectively
(Figure 2). A processor can use only same multiprocessor’s
shared memory. Because we use single precision in this study,
which is limited by the processors on the GPU, a single GPU has a
maximum grid size of ~500 x 500 x 300 grids.

To obtain high performance computation, it is beneficial to
know the maximum data size in shared memory. Because 12
variables (nine variables and three model parameters) are
specified on each grid, we can store only 341 grid data in one
shared memory of 16 KB. In our FD scheme, we require values
from 13 grids to evaluate one data point (Figure 3a). If we
calculate the next time step for all values of shared memory,
we must use device memory, because the edge of two grids in
shared memory requires values from outside the shared memory,
which is device memory. Device memory is, however, much
slower than shared memory, and therefore it is better to complete
the calculation using only the shared memory data. To overcome
this performance issue, we input two surplus grids (wing area) in
each direction into shared memory; the shape of input data is
shown in Figure 3b. Based on Figure 3b, we can calculate the
next time step value in 4 x 4 x 4 grids for each block. Because
synchronisation between blocks is not possible with the latest

(b)

release of the CUDA, we close the kernel at every time step and
share the data between blocks.

Simulation results
Single-GPU

Computation times are evaluated to compare the effectiveness of
shared memory usage in a 2D simulation. Test scenarios include
using only device memory (Case A), using both device and shared
memory (Case B) without wing area data in the shared memory,
and using only shared memory (Case C) with wing area data for
calculating each time step. These scenarios also differ with respect
to the number of accesses to device memory. In Case A device
memory is accessed at each calculation step, in Case B this
memory is accessed when we calculate the edge of the grid in
shared memory, whilst in Case C it is accessed twice at the
beginning and end of each time step. Table 1 gives the
computation times for a single CPU, an Intel Core i7 920,
which is optimised by Open Multi-Processing (OpenMP;
Chandra et al., 2000), whilst Table 2 gives the computation
times for a single GPU and the acceleration ratio. We have
also compared the effect of using different block sizes, the size
of data stored in shared memory. Both Tables 1 and 2 give data for
1000 time steps. One block is calculated in one multiprocessor,
and the GPU iterates calculations until calculation of the whole
area is finished. We show the computation time of each case based
only on the fastest block size (Figure 4). Case C with an 8 x 8
block size is the fastest and it executes 14 times faster than on the
CPU. Thus, we should reduce the number of accesses to device
memory and search for the optimal block size.
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Fig. 3.
memory, including the wing area. White cubes depict the wing area whilst grey cubes show the calculation volume for subsequent time steps. Block size is
4 x 4 x 4. The number of grids in the wing is three times the number in the calculation volume.

(a) Thirteen grid positions (white and grey cubes) needed for computing the single grid (grey cube) at the centre in the next step. (b) Grids copied to shared
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Table1. Computation time for 2D elastic wave propagation simulation
on CPU.

480 x 480 960 x 960 1440 x 1440 1920 x 1920
189.10 324.90

Number of grids
Computation time (s) 24.08 90.44

Table 2. Computation time for 2D elastic wave propagation simulation
on GPU.
Case A uses only device memory, Case B uses both device and shared
memory, whilst Case C uses only shared memory. The value in parentheses
denotes the acceleration ratio between GPU and CPU computation. The value
in bold typeface represents the fastest time in each case.

Number of grids Case Block size
4x4 8x8 16 x 16
480 x 480 A 3.15(7.6x)  4.59(5.3%) 7.34 (3.3%)
B 6.59 (3.7x) 3.2(7.5%) 3.82 (8.5%)
C 313 (7.7x)  2.57(9.4%) 2.46 (9.8%)
960 x 960 A 13.50 (5.4x) 16.13 (5.6x) 32.04 (2.8%)
B 2528 (3.6x) 12.56 (7.2x) 10.08 (9.0x)
C 11.99 (7.5x)  6.95 (13.0x) 9.98 (9.1x)
1440 x 1440 A 35.10 (5.4x) 4426 (43x)  88.72 (2.1x)
B 56.79 (3.3x) 31.20 (6.1x) 22.84 (8.3%)
C 29.32 (6.4x) 14.38 (13.2x)  23.56 (8.0x)
1920 x 1920 A 71.89 (4.5x) 67.05(4.8x) 195.00 (1.7x)
B 100.00 (3.3x) 57.52 (5.6x) 40.72 (8.0x)
C 54.95(5.9x) 22.72 (143x) 41.31(7.9%)

In the same manner, that is, using shared memory as in Case C,
the computation time for 3D elastic wave propagation is
evaluated. The fastest block size, 4 x 4 x 4, is used (Table 3),
and we calculate 1000 time steps. According to these results, we
can achieve a six times increase in computation speed over the
CPU computation. Snapshots of the 3D elastic wave propagation
simulation are shown in Figure 5. The model size comprises
500 x 500 x 250 grids, that is, 2.5x2.5x 1.25km, and
absorbing boundaries, which are 20 grids deep each. The X-
and Y-directions denote the horizontal whilst the Z-direction
denotes the vertical: with Z=0 corresponding to a free surface.
The source is a Ricker Wavelet whose peak frequency is 7.5 Hz, at
the centre of the free surface. We use a flat horizontal two-layered
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Fig.4. Computation time for 2D elastic wave propagation simulation. CPU
(dashed line and circle); GPU Case A, using only device memory, (solid line
and circle); GPU Case B, using both device and shared memory, (dashed line
and cross); and GPU Case C, using only shared memory, (solid line and cross).
The values in this plot are shown in Table 2. The fastest time for each grid and
scenario is chosen without considering block size.

Table3. Computation time for 3D elastic wave propagation simulation.

Number 9696 x 192 x192x 288 x288x 384 x384x
of grids 96 192 288 384
CPU (s) 220.04 1737.70 8603.40 14790.00
CPU (s) 46.11 398.22 1378.70 2628.90

Accelerating 4.8x% 4.4x 6.2x 5.6%
ratio

model, with the horizontal boundary at Z=120. We can observe
the reflected waves from this horizon; reflected P- and S-waves
can be seen in Figure 5 in panels (d) and (e), respectively. We
compare this result and the analytic solution of the Z-component
displacement to confirm the suitability of this simulator
(Figure 6). The analytic solution was derived by Saito (1993),

(c)

t =0.75 (s)

Fig. 5. Snapshots of 3D elastic propagation simulation at 0.15 s intervals. We can see the reflected P-wave at 1=0.45s and S-wave at

t=0.60s from the horizon at Z= 120.
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Fig. 6. Comparison of the simulated Z-component displacement with the
analytic solution. Dashed line depicts the analytical result, whilst solid line
shows the simulation value. The distance between source and receiver is
400 m.

who solved Lamb’s problem in the frequency domain. The
estimated error between the simulation result and the
analytical solution gives the accuracy of the simulator. We
define the error as follows:

E=" (1)
i=t

where u; is the displacement calculated by this simulator, and u;” is
the value of the analytical solution. The error for Figure 6 is 2.2%,
which shows that our simulator executing on a GPU has similar
accuracy as our CPU simulation and is therefore useful for
geophysical modelling.

Multi-GPU

Using one GPU we can speed up the computation time of a 3D
simulation six times compared with one CPU. However, the size
of device memory in a single GPU limits the grid size. Thus, it is

better to deal with a large memory space by using multiple GPUs
(Micikevicius, 2009). We have two methods for synchronising
data between multiple GPUs: OpenMP or Message Passing
Interface (MPI). OpenMP can deal with a single node, whereas
MPI can deal with multi-node computing. In this study, we use
three GPUs in one node, and adopt the OpenMP method.

Multi-GPU computing is similar to parallel CPU computing.
First, we divide the entire data space between the number of GPUs
(three regions in this study: depicted in light grey in Figure 7)
with each block executed by one GPU. Next, to calculate the
edge of each area, surplus data, that is, two layers of grids from
adjacent blocks are copied to each block (dark grey in Figure 7).
Owing to this data copy, all light grey areas can be calculated in
one GPU. To reduce the computation time, we calculate first the
edge data and then we synchronise the edge data between the
GPUs and do a calculation inside each block, simultaneously.
For multi-GPU computing, therefore, additional data copies
must take place between GPUs and this process is the main
reason why GPU computing does not significantly improve the
computing speed. The computation method for each block is
the same as in the single GPU implementation. Using three GPUs,
we can improve the computation speed 10 times (1452 s with
384 x 384 x 384 grids, 1000 time steps) over a single CPU
computation.

Discussion

In this paper, we have demonstrated that the usage of memory,
especially shared memory, is the most important factor in
accelerating of computation speed when using a GPU
(Table 2). When using only device memory, we need to access
that memory many times (i.e. the same number of times for every
term in the FDTD scheme). The effectiveness of shared memory
can clearly be seen in Case B (Table 2). The access ratio of device
memory to shared memory decreases as we increase the block
size. Witha 16 x 16 block size, as the simulator accesses to device
memory the least number of times, computation time for every

Fig. 7. Volume division method for multi-GPU computing. The upper box is assumed to be the whole data
volume, which we divide into three blocks (light grey, solid line and arrow). To calculate the edge of each block,
we also copy two layers of adjacent blocks (dark grey, dashed line and arrow).
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gridis the fastest. Moreover, in Case C only two accesses to device
memory are made, at start up and shut down of the kernel, and
therefore, this is the fastest case. Because GPU can run several
kernels simultaneously if their shared memory is available, the
8 x 8 block size is faster than 16 x 16 block size. The block size
also influences the volume of communication traffic for one
access.

The device memory bandwidth is used most efficiently with
simultaneous memory accesses by 16 processors, as this can be
coalesced into a single memory transaction of 32, 64, or 128 bytes
(NVIDIA CUDA, 2010). For example, copying 4 bytes of data
from device memory is not efficient, since we must copy 32 bytes
of data including 28 bytes of useless data. Thus the time taken to
copy memory without coalescing is ~10 times slower than with
coalescing. Processors must access device memory sequentially
for coalescing. The order of loops also influences coalescing. If
we can coalesce a memory copy by copying in the X-direction, we
may not coalesce when copying in the Y-direction. Data are stored
linearly in memory and coalescing happens only in one direction.
Thus, we optimise the coalescing by choosing the best loop order.
Because we can only use a small block size and must copy large
portions of memory, the 3D elastic wave propagation simulation
has a smaller acceleration ratio than the 2D simulation. The key
points of optimisation for elastic wave simulation are using faster
memory, appropriate block size, and coalescing.

Conclusions

A GPU enables us to increase the simulation speed in a 2D elastic
wave propagation simulation by more than 14 times and over six
times in a 3D elastic wave propagation simulation. We also
achieved 10 times acceleration using three GPUs. By using
this GPU simulator, we can simulate fully elastic waves for
500 x 500 x 300 grids in less than an hour. When using our
CPU simulator on the other hand, it takes ~10 h to calculate elastic
waves in the same size grid. This computation time is considered a
reasonable computation time for industrial use.

Shared memory should be used as much as possible in GPU
computing, since the access speed of shared memory is faster
than that of device memory. Increasing the computation speed
depends on both block size and coalescing. Ultimately, we should
improve the rate of communication between shared and device
memory. For large-grid modelling, multi-GPU computing is
preferable. Although in this paper the simulation is carried out
in single precision, by obtaining GPUs with a large shared
memory space and double-precision processors, we could
perform double precision simulations and we will then be able
to use the GPU for inverse problems such as full-wave inversion.
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