• Title/Summary/Keyword: Bandwidth Efficiency

Search Result 794, Processing Time 0.029 seconds

Adaptive Call Admission and Bandwidth Control in DVB-RCS Systems

  • Marchese, Mario;Mongelli, Maurizio
    • Journal of Communications and Networks
    • /
    • v.12 no.6
    • /
    • pp.568-576
    • /
    • 2010
  • The paper presents a control architecture aimed at implementing bandwidth optimization combined with call admission control (CAC) over a digital video broadcasting (DVB) return channel satellite terminal (RCST) under quality of service (QoS) constraints. The approach can be applied in all cases where traffic flows, coming from a terrestrial portion of the network, are merged together within a single DVB flow, which is then forwarded over the satellite channel. The paper introduces the architecture of data and control plane of the RCST at layer 2. The data plane is composed of a set of traffic buffers served with a given bandwidth. The control plane proposed in this paper includes a layer 2 resource manager (L2RM), which is structured into decision makers (DM), one for each traffic buffer of the data plane. Each DM contains a virtual queue, which exactly duplicates the corresponding traffic buffer and performs the actions to compute the minimum bandwidth need to assure the QoS constraints. After computing the minimum bandwidth through a given algorithm (in this view the paper reports some schemes taken in the literature which may be applied), each DM communicates this bandwidth value to the L2RM, which allocates bandwidth to traffic buffers at the data plane. Real bandwidth allocations are driven by the information provided by the DMs. Bandwidth control is linked to a CAC scheme, which uses current bandwidth allocations and peak bandwidth of the call entering the network to decide admission. The performance evaluation is dedicated to show the efficiency of the proposed combined bandwidth allocation and CAC.

Implementation of a DBA Algorithm with the Maximum Link Bandwidth Allocation in the G-PON (G-PON에서 최대 링크 대역폭까지 할당이 가능한 DBA 알고리즘의 구현)

  • Chung, Hae;Hong, Jung-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.8
    • /
    • pp.1549-1560
    • /
    • 2009
  • In the TDMA PON system, the DBA is essential for ONUs to send data efficiently to the upstream. In this paper, we implement a DBA processor for the G-PON OLT with downstream and upstream rate, 2.5 and 1.25 Gbps, respectively, The processor collects bandwidth request messages from ONUs at every cycle time and allocates properly bandwidth to each Alloc-ID with considering priority and fairness for traffics. In the proposed DBA algorithm, one cycle time consists of multiple G-PON frames ($m{\times}125{\mu}s$) for high link efficiency. In particular, the link efficiency is higher because the algorithm adopts a method that an additional overhead is eliminated when an allocated bandwidth is laid between two G-PON frames for an ONU. This enables that the processor flexibly allocates the bandwidth from zero to the maximum link capacity for an ONU. The proposed DBA processor is implemented with the FPGA and shows bandwidth allocating processes for ONUs with logic analyzer.

System Architecture Design and Policy Implications on the e-Marketplace for Telecom Bandwidth Trading (Telecom Bandwidth Trading을 위한 시스템 아키텍처 설계와 거래시장 모형)

  • Kim, Do-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.4
    • /
    • pp.257-267
    • /
    • 2007
  • Bandwidth Trading(BT) represents a potential market with over 1 trillion USD across the world and high growth potential. BT is also likely to accelerate globalization of the telecommunications industry and massive restructuring driven by unbundling rush. However, systematic researches on BT remain at an infant stage. This study starts with structure analysis of the Internet industry, and discusses significance of Internet interconnection with respect to BT issues. We also describe the bandwidth commoditization trends and review technical requirements for effective Internet interconnection with BT capability. Taking a step further, this study explores the possibility of improving efficiency of network providers and increasing user convenience by developing an architectural prototype of Hub-&-Spoke interconnection model required to facilitate BT. The BT market provides an innovative base to ease rigidity of two-party contract and increase service efficiency. However, as fair, efficient operation by third party is required, this research finally proposes an exchanging hub named NIBX(New Internet Business eXchange).

  • PDF

A Bandwidth Allocation Scheme using NBS in a Multiservice Networks (멀티서비스 네트워크에서 NBS를 이용한 대역폭 할당 기법)

  • Park, Jae-Sung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.1
    • /
    • pp.66-71
    • /
    • 2012
  • In this paper, using the bargaining game theory, we propose a bandwidth management scheme that allocates bandwidth in an efficient and proportionally fair manner between the service classes with different service requirements. Since the traffic input rates of the classes are asymmetric in most of the time, the proposed scheme allocates bandwidth in proportion to the traffic input rates to increase the bandwidth utilization while protecting the quality of service of a class against the excessive traffic input of the other classes. In addition, the proposed method considers the weights of classes so that the bandwidth is allocated differentially among the classes.

Performance Analysis of Multicarrier DS/CDMA System Employing Combined Modulation techniques in a Nakagami Fading Channel (나카가미 페이딩 채널에서 합성변조 기법을 채용한 다중반송파 DS/CDMA 시스템 성능 분석)

  • 양원일;강희조
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.1
    • /
    • pp.52-60
    • /
    • 2001
  • In this paper proposes a multi-carrier MFSK-DPSK/DS-CDMA combined modulation techniques in Nakagami fading environment. Also, multi-carrier DS-CDMA combined system is a promising technique for mobile communications systems, since it has a strong immunity to multipath fading and increasing bandwidth efficiency. The modulations under consideration are noncoherent M-ary frequency shift keying (MFSK)and an MFSK based joint frequency phase modulation utilizing differential phase shift keying (DPSK). With the result, performance improvement of power efficiency and bandwidth efficiency combined system in multi-carrier MFSK-DPSK/DS-CDMA are better then conventional communication system.

  • PDF

Bandwidth - Power Optimization Methodology for SFB Filter Design

  • Shin, Hun-Do;Ryu, Seung-Tak
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.1
    • /
    • pp.88-98
    • /
    • 2012
  • In this paper, the relationship between the bandwidth (BW) and power efficiency of a source follower based (SFB) filter is quantitatively analyzed, and a design methodology for a SFB filter for optimized BW - power consumption is introduced. The proposed design methodology achieves a maximum BW at a target quality (Q) factor for the given power consumption constraint by controlling design factors individually. In order to achieve the target BW from the maximized BW, a tuning method is introduced. Through the proposed design methodology, a fourth order Butterworth filter was implemented in 0.18 ${\mu}m$ CMOS technology. The measured BW, power consumption, and IIP3 are 100 MHz, 33 ${\mu}W$, and 9 dBm, respectively. Compared with other filter structures, the measured results show high BW - power efficiency.

Energy efficient scheme based on simultaneous transmission of the local decisions in cooperative spectrum sensing

  • Aquino, Guilherme Pedro;Guimaraes, Dayan Adionel;Cattaneo, Marco E.G.V.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.996-1015
    • /
    • 2016
  • A common concern regarding cooperative spectrum sensing (CSS) schemes is the occupied bandwidth and the energy consumption during the transmissions of sensing information to the fusion center over the reporting control channels. This concern is intensified if the number of cooperating secondary users in the network is large. This article presents a new fusion strategy for a CSS scheme, aiming at increasing the energy efficiency of a recently proposed bandwidth-efficient fusion scheme. Analytical results and computational simulations unveil a high increase in energy efficiency when compared with the original approach, yet achieving better performances in some situations, and lower implementation complexity.

Minimum Energy-per-Bit Wireless Multi-Hop Networks with Spatial Reuse

  • Bae, Chang-Hun;Stark, Wayne E.
    • Journal of Communications and Networks
    • /
    • v.12 no.2
    • /
    • pp.103-113
    • /
    • 2010
  • In this paper, a tradeoff between the total energy consumption-per-bit and the end-to-end rate under spatial reuse in wireless multi-hop network is developed and analyzed. The end-to-end rate of the network is the number of information bits transmitted (end-to-end) per channel use by any node in the network that is forwarding the data. In order to increase the bandwidth efficiency, spatial reuse is considered whereby simultaneous relay transmissions are allowed provided there is a minimum separation between such transmitters. The total energy consumption-per-bit includes the energy transmitted and the energy consumed by the receiver to process (demodulate and decoder) the received signal. The total energy consumption-per-bit is normalized by the distance between a source-destination pair in order to be consistent with a direct (single-hop) communication network. Lower bounds on this energy-bandwidth tradeoff are analyzed using convex optimization methods. For a given location of relays, it is shown that the total energy consumption-per-bit is minimized by optimally selecting the end-to-end rate. It is also demonstrated that spatial reuse can improve the bandwidth efficiency for a given total energy consumption-per-bit. However, at the rate that minimizes the total energy consumption-per-bit, spatial reuse does not provide lower energy consumption-per-bit compared to the case without spatial reuse. This is because spatial reuse requires more receiver energy consumption at a given end-to-end rate. Such degraded energy efficiency can be compensated by varying the minimum separation of hops between simultaneous transmitters. In the case of equi-spaced relays, analytical results for the energy-bandwidth tradeoff are provided and it is shown that the minimum energy consumption-per-bit decreases linearly with the end-to-end distance.

Bandwidth-Efficient Precoding Scheme for Downlink Smart Utility Networks

  • Kim, Byung Wook
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.8
    • /
    • pp.1012-1019
    • /
    • 2014
  • The emerging smart utility networks (SUN) provide two-way communications between smart meters and smart appliances for purpose of low power usage, low cost, and high reliability. This paper deals with a bandwidth-efficient communication method based on the hidden pilot-aided scheme using a precoder in downlink SUN suitable for high-rate multimedia applications. With the aid of the design of a precoder and a superimposed hidden pilot, it is possible to estimate the channel without loss of bandwidth. In the channel estimation procedure, the inevitable data interference, which degrades the performance of channel estimation, can be reduced by the precoder design with an iterative scheme. Computer simulations show that the proposed scheme outperforms the conventional method in terms of achievable data rate, especially when a large number of subcarriers are employed.

Electrically Small Antenna with Bandwidth over 2/Q Limit (2/Q 대역폭 한계치를 넘는 소형 안테나 설계)

  • Lee, Chul-Hee;Choo, Ho-Sung;Park, Ik-Mo
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.255-258
    • /
    • 2005
  • In this paper, we verify that the bandwidth of the optimized disk-loaded monopole antenna with electromagnetically coupled feed obtained using a genetic algorithm is broader than the theoretical bandwidth limit of 2/Q by simulation as well as by measurement. The measured bandwidth of the optimized antenna (kr : 0.599) is about 42% from 380 MHz to 580 MHz (VSWR<5.8). The efficiency measurement of the antenna is over 90% for the frequency band of operation.

  • PDF