• Title/Summary/Keyword: Band pass filter

Search Result 747, Processing Time 0.041 seconds

Ku-Band Dielectric Resonator Bandpass Filter for Satellite Transponder (인공 위성 중계기용 Ku-Band 유전체 공진기 대역 통과 필터)

  • 김상철;이찬주;홍의석
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.11
    • /
    • pp.49-56
    • /
    • 1992
  • In this paper a band-pass filter using dielectric resonators with tuning screw and spacer at Ku-band is designed and constructed. For the filter design and construction, the coupling coefficient K between two resonators is numberically evaluated. The external quality factor Q$_{ex}$ is also calculated with a microstrip line which is necessary for the field excitation of dielectric resonator. The coupling between dielectric resonator and microstrip line depends mainly upon the magnetic field and is principal parameter in band-pass filter. The Q$_{ex}$ and K data which are evaluated by numberical analysis are practically applied to the filter construction. The theoretical Band-pass filter responses are given by Chebyshev approximation and they are nearly similar to the experimental results.

  • PDF

Dielectric Band-Pass Filter with Attenuation Poles at Desired Frequencies

  • Lee, Moon-Que
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.6
    • /
    • pp.268-271
    • /
    • 2004
  • An analytic design formula is proposed for a TEM mode dielectric bandpass filter with attenuation poles at desired frequencies in the stop band. In order to sustain the constant ripple in the passband due to attenuation poles, the initial resonant frequencies of the various resonators adopted in a filter with attenuation poles are newly calculated. The proposed design theory is verified by designing various bandpass filters with attenuation poles in the stop band.

Harmonic Suppression and Broadening Bandwidth of Band Pass Filter Using Aperture and Photonic Band Gap Structure

  • Seo, Chul-Hun
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.4
    • /
    • pp.208-212
    • /
    • 2005
  • In this paper, we introduced a band-pass filter employed the PBG structure and the aperture on the ground together. The harmonics of band pass filter have been suppressed by employing the PBG structure and the bandwidth of it has been broadened by using the aperture on the ground. The designed PBG cells have three different sizes. The largest cells, the middle cells, and the smallest cells have suppressed the multiple of second harmonics, the multiple of third harmonics, and the multiple of fifth harmonics, respectively. The center frequency has been 2.18 GHz. The bandwidth has been increased from 230 MHz up to 310 MHz(80 MHz, about $35\%$) by the aperture and the ripple characteristics in passband have been improved and the harmonic frequencies have been suppressed about 30 dB by the PBG.

Analysis of Sagnac Loop Band-pass Filter in Incorporating Fiber Bragg Gratings (FBG를 삽입한 사냑 루프 대역 통과 필터의 해석)

  • Jung, Eun-Joo;Jeong, Myung-Yung;Kim, Chang-Seok
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.2
    • /
    • pp.105-110
    • /
    • 2007
  • A tunable band-pass filter of fiber Bragg gratings incorporating the Sagnac loop interferometer configuration is presented. The proposed band-pass filter with extinction ratio 20 dB has practical advantages in terms of price and performance in comparison with the conventional band-pass filter using a circulator.

Design of a Novel low Pass Filler will Low Spurious Response for Satellite Transponder (위성중계기를 위한 낮은 불요 특성을 갖는 새로운 형태의 저역통과 필터 설계)

  • 이문규;류근관;염인복;이성팔
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2001.11a
    • /
    • pp.172-175
    • /
    • 2001
  • A novel microstrip type low-pass filter using thin or thick film resistors is proposed to efficiently eliminate harmonic spurious response in stop-band. The proposed low-pass filter shows the spurious suppression enhancement of 20 dB over a conventional one. The designed low-pass filter could be used as a harmonic rejection filter of a local oscillator for Ku-band satellite payload system.

  • PDF

Numerical Investigation of Tunable Band-pass\band-stop Plasmonic Filters with Hollow-core Circular Ring Resonator

  • Setayesh, Amir;Mirnaziry, Sayyed Reza;Abrishamian, Mohammad Sadegh
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.82-89
    • /
    • 2011
  • In this paper, we numerically study both band-pass and band-stop plasmonic filters based on Metal-Insulator-Metal (MIM) waveguides and circular ring resonators. The band-pass filter consists of two MIM waveguides coupled to each other by a circular ring resonator. The band-stop filter is made up of an MIM waveguide coupled laterally to a circular ring resonator. The propagating modes of Surface Plasmon Polaritons (SPPs) are studied in these structures. By substituting a portion of the ring core with air, while the outer dimensions of the ring resonator are kept constant, we illustrate the possibility of red-shift in resonant wavelengths in order to tune the resonance modes of the proposed filters. This feature is useful for integrated circuits in which we have limitations on the outer dimensions of the filter structure and it is not possible to enlarge the dimension of the ring resonator to reach to longer resonant wavelengths. The results are obtained by a 2D finite-difference time-domain (FDTD) method. The introduced structures have potential applications in plasmonic integrated circuits and can be simply fabricated.

A Study on Fluorescence Imaging System Characteristics depending on Tilting of Band Pass Filter (대역통과필터의 기울임에 따른 형광 이미징 시스템 특성 분석 연구)

  • Kim, Taehoon;Cho, Sang Uk;Park, Chan Sik;Lee, Hak-Guen;Kim, Doo-In;Jeong, Myung Yung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.2
    • /
    • pp.85-89
    • /
    • 2016
  • In this paper, we studied effects of tilting angle of band pass filter on the characteristics of fluorescence imaging system. Theoretical modeling showed that transmittance and filtering range are highly dependent on the tilting angle. Measurements on transmittance as a function of wavelength confirmed that changes in transmittance and the band filter range are in good agreement with theoretical prediction. Therefore, characteristics of band pass filter can be precisely tuned by altering tilting angle of band pass filter in order to enhance fluorescence signal in bio imaging system.

Study on a design of Band Pass Filter C-band using silicon substrate (실리콘 기판을 이용한 Ku-band용 Band Pass Filter 설계에 관한 연구)

  • Lee, Tae-Il;Cui, Ming-Lu;Park, In-Chul;Kim, Hong-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.219-222
    • /
    • 2003
  • In this paper, we designed a Ku-band BPF(Band Pass Filter) by microstrip line that most usually used a microwave device design and fabrication. Here a substrate of designed BPF were silicon substrate(${\varepsilon}_r=11.8$), and metal line was copper and silver/copper structure. And a configration of BPF was used hairpin pattern. A center frequency of designed BPF was 10GHz and their FBW(Fractional Band Width) was 20%(2GHz). It presented simulated results obtained for a 10GHz filter which yields an insertion loss of 0.1dB that ripple value related chebyshev reponse. Finallt we tried to make that a 30dB attenuation frequency was 20% of center frequency.

  • PDF

A Design of High Temperature Superconducting Low-Pass Filter for Broad-Band Harmonic Rejection (광대역 고조파 제거용 고온초전도 저역통과 필터의 설계)

  • Kwak, Min-Hwan;Kim, Sang-Hyun;Ahn, Dal;Han, Seok-Kil;Kang, Kwang-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.78-81
    • /
    • 2000
  • A new type low-pass filter design method based on a coupled line and transmission line theory is proposed to suppress harmonics by attenuation poles in the stop band The design formula are derived using the equivalent circuit of a coupled transmission line. The new low-pass filter structure is shown to have attractive properties such as compact size, wide stop band range and low insertion loss. The seventh-order low-pass filter designed by present method Ins a cutoff frequency of 0.9 GHz with a 0.01 dB ripple level. The coupled line type low-pass filter with stripline configuration was fabricated by using a high-temperature superconducting (HTS ; $YBa_2Cu_3O_{7-x}$) thin film on MgO(100) substrate. Since the HTS coupled line type low-pass filter was proposed with five attenuation poles in stop band such as 1.8, 2.5, 4, 5.5, 62 GHz. The fabricated low-pass filter has improved the attenuation characteristics up to seven times of the cutoff frequency Bemuse of good rejection of the spurious signals and harmonics, our low-pass filter is applicable to mobile base station systems such as cellular, personal communication systems and international mobile telecommunication(IMT)-2000 systems.

  • PDF

A Dual-Band Through-the-Wall Imaging Radar Receiver Using a Reconfigurable High-Pass Filter

  • Kim, Duksoo;Kim, Byungjoon;Nam, Sangwook
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.3
    • /
    • pp.164-168
    • /
    • 2016
  • A dual-band through-the-wall imaging radar receiver for a frequency-modulated continuous-wave radar system was designed and fabricated. The operating frequency bands of the receiver are S-band (2-4 GHz) and X-band (8-12 GHz). If the target is behind a wall, wall-reflected waves are rejected by a reconfigurable $G_m-C$ high-pass filter. The filter is designed using a high-order admittance synthesis method, and consists of transconductor circuits and capacitors. The cutoff frequency of the filter can be tuned by changing the reference current. The receiver system is fabricated on a printed circuit board using commercial devices. Measurements show 44.3 dB gain and 3.7 dB noise figure for the S-band input, and 58 dB gain and 3.02 dB noise figure for the X-band input. The cutoff frequency of the filter can be tuned from 0.7 MHz to 2.4 MHz.