• Title/Summary/Keyword: Band offset

Search Result 382, Processing Time 0.024 seconds

Design and Fabrication of Ultrawideband Spinning Direction Finding Antenna for Airborne Applications (항공용 초광대역 회전 방향 탐지 안테나 설계 및 제작)

  • Kim, Jeeheung;Ryu, Hongkyun;Park, Young-Ju;Lee, Byungnam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.4
    • /
    • pp.320-323
    • /
    • 2018
  • Herein, an ultrawideband spinning direction finding (DF) antenna was designed and fabricated for airborne applications. The proposed antenna is designed by dividing the low-band (UHF - L band) and high-band (S - Ka band) antennas to cover the ultrawideband frequency range (UHF - Ka band). For the high-band antenna, an LPDA antenna fed offset-parabolic-reflector antenna is applied. In the low-band antenna, two LPDA antenna elements are arrayed in front of the reflector of the high-band antenna without increasing to the full antenna size. The low- and high-band gains of the fabricated antenna were measured as 8.76 dBi and 24.55 dBi on average, respectively. The antenna was fabricated with the dimensions of 437 mm in diameter and 358 mm in height. Consequently, we confirmed that the designed antenna is appropriate for the spinning DF antenna in terms of the affordable size for installing on an airplane, as well as the high gain and narrow beamwidth.

A Ku-Band Hair-Pin Resonator Oscillator with a New Varactor Coupled Line Structure (개선된 바랙터 결합 선로를 이용한 Ku-Band 헤어핀 발진기 설계)

  • Choi, Kwang-Seok;Won, Duck-Ho;Yun, Sang-Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.1
    • /
    • pp.83-89
    • /
    • 2010
  • In this paper, we propose a new varactor coupled line structure and design the VCO using the proposed structure. The proposed coupled line structure removes the reflected signals from the varactor diode using an added $\lambda$/4 transmission line. The frequency synthesizers are designed using the PLL technique at Ku-band. The synthesizer using the proposed coupled structure has 38 MHz frequency tuning range and -97 dBc/Hz phase noise characteristic at 100 KHz offset frequency. The measured results show improved tuning range as well as the improved phase noise characteristics compared to the conventional designs.

Design of PLL Frequency Synthesizer for a 915MHz ISM Band wireless transponder using CPFSK communication (CPFSK communication 사용한 915MHz ISM Band 위한 PLL Frequency Synthesizer 설계)

  • Kim, Seung-Hoon;Cho, Sang-Bock
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.286-288
    • /
    • 2007
  • In this paper, the fast locking PLL Frequency Synthesizer with low phase noise in a 0.18um CMOS process is presented. Its main application IS for the 915MHz ISM band wireless transponder upon the CPFSK (Continuous Phase Frequency Shift Keying) modulation scheme. Frequency synthesizer, which in this paper, is designed based on self-biased techniques and is independent with processing technology when damping factor and bandwidth fixed to most important parameters as operating frequency ratio, broad frequency range, and input phase offset cancellation. The proposed frequecy synthesizer, which is fully-integrated and is in 320M $^{\sim}$ 960MHz of the frequency range with 10MHz of frequency resolution. And its is implemented based on integer-N architecture. Its power consumption is 50mW at 1.8V of supply voltage and core area is $540{\mu}m$ ${\times}$ $450{\mu}m$. The measured phase noises are -117.92dBc/Hz at 10MHz offset, with low settling time less than $3.3{\mu}s$.

  • PDF

A Study on the Design and Fabrication of X-band Dielectric Resonator Oscillator using Phase Looked Loop (위상고정 회로를 이용한 X-band DRO 설계 및 제작에 관한 연구)

  • 성혁제;손병문;최근석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.5
    • /
    • pp.715-722
    • /
    • 2000
  • In this paper, the PLDRO is designed and implemented for X-band. It is comprised of tunable high Q resonator with a varactor diode for frequency tuning, loop filter and a 1/8 prescaler which up to 10GHz. Also, it is implemented a TCXO and a VCO signal into the phase detector and achieved a highly stable signal source. From the measurement, the designed PLDRO has the output power of 2.5dBm at 8GHz and phase noise of -64.33dBc at 10KHz offset from carrier. Its characteristic is 26 dBc. This PLDRO has much better temperature stability.

  • PDF

Design of W Band Frequency Synthesizer Using Frequency Tripler (주파수 3체배기를 이용한 W 밴드 주파수 합성기 설계)

  • Cho, Hyung-Jun;Cui, Chenglin;Kim, Seong-Kyun;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.10
    • /
    • pp.971-978
    • /
    • 2013
  • This work presents a W band frequency synthesizer which is composed of 26 GHz VCO, Phase Locked Loop and frequency tripler using 65 nm RF CMOS process. Frequency tuning range of 26 GHz VCO covers the band from 22.8~26.8 GHz and final output frequency of the tripler is from 74 to 75.6 GHz. The fabricated frequency synthesizer consumes 75.6 mW and its phase noise is -75 dBc/Hz at 1 MHz offset, -101 dBc/Hz 10 MHz offset respectively.

Design of Efficient frequency Offset Estimator for MB-OFDM based UWB Systems (MB-OFDM 기반 UWB 시스템을 위한 효율적인 주파수 옵셋 추정기의 설계)

  • Kim, Kil-Hwan;Jung, Yun-Ho;Kim, Jae-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.3C
    • /
    • pp.311-321
    • /
    • 2009
  • This paper proposes an efficient frequency offset estimation algorithm for MB-OFDM based UWB systems. The time-frequency interleaving in MB-OFDM extends the time-interval between two transmitted OFDM symbols in the same sub-band. The extended time-interval causes not only the degradation of the system performance by reducing frequency offset estimation range, but also the increase of the hardware complexity by requiring the larger number of storing samples. The proposed estimation algorithm expands the estimation range by applying the proposed sign detection scheme. Simulation results show that the estimation range is increased above 30 ppm compared with a conventional auto-correlation based scheme. The estimation is performed on only one sub-band, and the frequency offsets of the others are calculated by relation to center frequency. This way reduced the number of the storing samples by about l/3. The frequency offset estimator with the proposed algorithm was designed into the architecture which minimizes hardware overhead by time-sharing operators and memory units, and which was synthesized to gate-level circuits using $0.13{\mu}m$ CMOS technology, and the total gates were about 47K.

Effect of Residual Frequency Offsets on the Performance of Adaptive Equalizers (잔여 주파수 옵셋이 적응 등화기의 성능에 미치는 영향)

  • Kim, Young-Wha;Cho, Sung-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.4E
    • /
    • pp.108-111
    • /
    • 2004
  • This paper has interest in the effect of a fine frequency offset, defined in ITU-T G.225, to the training performance of an adaptive equalizer. This paper uses Hilbert filter in configuring a transmission system model in order to let it get a frequency offset. Also additive white Gaussian noise and band-limited filter are considered. The signal received from the above transmission system applies to an adaptive equalizer with LMS algorithm, and its training procedures are investigated. As a result, we could find that even small fine frequency offset can severely deteriorate training performance of adaptive algorithm.

A Quadrature VCO Exploiting Direct Back-Gate Second Harmonic Coupling

  • Oh, Nam-Jin
    • Journal of electromagnetic engineering and science
    • /
    • v.8 no.3
    • /
    • pp.134-137
    • /
    • 2008
  • This paper proposes a novel quadrature VCO(QVCO) based on direct back-gate second harmonic coupling. The QVCO directly couples the current sources of the conventional LC VCOs through the back-gate instead of front-gate to generate quadrature signals. By the second harmonic injection locking, the two LC VCOs can generate quadrature signals without using on-chip transformer, or stability problem that is inherent in the direct front-gate second harmonic coupling. The proposed QVCO is implemented in $0.18{\mu}m$ CMOS technology operating at 2 GHz with 5.0 mA core current consumption from 1.8 V power supply. The measured phase noise of the proposed QVCO is - 63 dBc/Hz at 10 kHz offset, -95 dBc/Hz at 100 kHz offset, and -116 dBc/Hz at 1 MHz offset from the 2 GHz output frequency, respectively. The calculated figure of merit(FOM) is about -174 dBc/Hz at 1 MHz offset. The measured image band rejection is 46 dB which corresponds to the phase error of $0.6^{\circ}$.

Performance Analysis of OFDM System Considering Carrier Frequency Offset in Wireless LAN Channel Environment

  • Kim, Ji-Woong;Kang, Heau-Jo;Lee, Kwon-Hyun
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.1
    • /
    • pp.1-4
    • /
    • 2004
  • In this paper, We analyzes how a synchronization error affects receiving system when using OFDM(Orthogonal Frequency Division Multiplexing) transmission method in wireless LAN channel environment in which we can efficiently transmit wide-band information data. As a performance improvement method, performance distortion can be improved by applying convolution coding. As a result, in OFDM system, we could see that the higher a frequency offset is, the worse performance will be, and we could see that there was performance improvement by applying convolution coding in OFDM system in order to reach (BER=$10^{-3}$). However, when we use 64QAM (64Quadrature Amplitude Modulation), there was a huge influence between carriers by frequency offset at 0.05, 0.1.