• Title/Summary/Keyword: Band Stop Characteristic

Search Result 30, Processing Time 0.024 seconds

UWB Antenna with Band Stop Characteristic in UNII Band (UNII 밴드에서 대역 저지 특성을 갖는 초광대역 안테나)

  • Roh Yang-Woon;Chung Kyung-Ho;Choi Jae-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.2 s.93
    • /
    • pp.194-198
    • /
    • 2005
  • A novel ultra wideband microstrip-fed circular patch antenna having band stop characteristic in UNII band is presented. The band stop characteristic is realized by inverted-U shaped slot. The range of stop bandwidth can be adjusted by changing the length of the slot. The measured impedance bandwidth of the proposed antenna is from 2.9 GHz to 12.1 GHz with the stop band from 4.9 GHz to 6 GHz for VSWR<2. This antenna shows a monopole-like radiation pattern and flat gain characteristic throughout the operating frequency band.

Quadruple Band-Notched Trapezoid UWB Antenna with Reduced Gains in Notch Bands

  • Jin, Yunnan;Tak, Jinpil;Choi, Jaehoon
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.1
    • /
    • pp.35-43
    • /
    • 2016
  • A compact ultra-wide band antenna with a quadruple band-notched characteristic is proposed. The proposed antenna consists of a slotted trapezoid patch radiator, an inverted U-shaped band stop filter, a pair of C-shaped band stop filters, and a rectangular ground plane. To realize the quadruple notch-band characteristic, a U-shaped slot, a complementary split ring resonator, an inverted U-shaped band stop filter, and two C-shaped band stop filters are utilized in this antenna. The antenna satisfies the -10 dB reflection coefficient bandwidth requirement in the frequency band of 2.88-12.67 GHz, with a band-rejection characteristic in the WiMAX (3.43-3.85 GHz), WLAN (5.26-6.01 GHz), X-band satellite communication (7.05-7.68 GHz), and ITU 8 GHz (8.08-8.87 GHz) signal bands. In addition, the proposed antenna has a compact volume of $30mm{\times}33.5mm{\times}0.8mm$ while maintaining omnidirectional patterns in the H-plane. The experimental and simulated results of the proposed antenna are shown to be in good agreement.

Dual-Band MIMO Antenna Using a Band Stop Matching Circuit for USB Dongle Applications (대역 저지 특성을 갖는 정합 회로를 이용한 USB Dongle용 이중 대역 MIMO 안테나)

  • Han, Min-Seok;Choi, Jae-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.9
    • /
    • pp.924-929
    • /
    • 2009
  • In this paper, a dual-band MIMO antenna with a band stop matching circuit for next generation USB dongle application is proposed. The proposed multiband MIMO antenna consists of two dual-band PIFAs which provide wideband characteristics. In order to improve the isolation characteristic at the LTE(Long Term Evolution) band, a band stop matching circuit was inserted at the corner of each antenna element. The inserted band stop matching circuit is to suppress the surface current at the specific frequency band and to generate two additional resonances around 770 MHz for LTE band and near 830 MHz for digital communications network(DCN) service. The proposed MIMO antenna can cover LTE and DCN services, simultaneously.

Adaptive Design of IIR Digital Filters Using Output Error Method with Adaptive Compensator (적응 보상기를 가지는 출력오차 방법을 이용한 IIR 다지탈 필터의 적응적 설계)

  • 배현덕;이종각
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.9
    • /
    • pp.685-690
    • /
    • 1987
  • Adaptive design of IIR digiral filters using equation error method has been studied. In this paper, a design technique of IIR digital filters using output error method with adaptive compensator is presented. In computer simulation results, it is shown that flat response characteristic in pass-band, below-40[dB] attenuation characteristic in stop-band, sharf cut-off characteristic in transition-band, and phase characteristic is linearin pass-band.

  • PDF

Dual-band Gysel Power Divider based on Filter Conversion Technique (여파기 변환 기법을 이용한 이중대역 Gysel 전력 분배기)

  • Yoo, Jae-Hyun;Kim, Young
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.1
    • /
    • pp.33-38
    • /
    • 2013
  • In this paper, we present the design and measured performances of an dual-band Gysel power divider based on band-stop characteristic. After the Gysel divider is designed by lumped elements at single operating frequency, and then using filter conversion technique the lumped elements were changed a band-stop characteristic with dual-band characteristics. The features of this design method are that ${\lambda}/4$ transmission line by replacing lumped elements suppressed harmonic characteristics and also can reduce the size. To validate of the proposed power divider, the divider has been designed and measured at 880 MHz and 1650 MHz dual frequencies. The measured performances of the Gysel divider agree with prediction results at two frequencies.

The Design of Microstrip Band-Selective Filter with Narrow Stopband for UWB Application (협대역 저지 특성을 가지는 UWB용 마이크로스트립 필터 설계)

  • Roh, Yang-Woon;Hong, Seok-Jin;Jung, Kyung-Ho;Jung, Ji-Hak;Choi, Jae-Hoon
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.7-12
    • /
    • 2005
  • A compact microstrip band-selective filter for ultra-wideband (UWB) radio system is proposed. The filter combines the traditional short-circuited stub highpass filter and coupled resonator bandstop filter on both sides of the mitered 50-ohm microstrip line. To realize the pseudo-highpass filtering characteristic over UWB frequency band (3.1 GHz to 10.6 GHz), a distributed highpass filter scheme is adopted. Three coupled resonators are utilized to obtain the band stop function at the desired frequency band. By meandering the coupled resonators, there is 29% reduction in footprint compared to the traditional bandstop filter using L-shaped resonators. The measured results show that the filter has a wide passband of 146.7 % (2.1 GHz to 10.15 GHz) with low insertion loss and the stop band of 7.42 % (5.32 GHz to 5.73 GHz) for 3-dB bandwidth. The measured group delay is less than 0.7 ns within the passband except the rejection band.

  • PDF

Design of a UWB Antenna with Band-Notch Function

  • Fanli, Zeng;Lee, Jae-Won;Kim, Chul-Hee;Choi, Jae-Hoon
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.1
    • /
    • pp.39-44
    • /
    • 2010
  • In this paper, a compact wideband antenna with a band-notch function is proposed. It operates over the UWB band with a band-stop characteristic. To increase the impedance bandwidth, a ring-shaped radiator is used. By attaching a circular stub to the ring-shaped radiator, the band-notch performance is obtained. The proposed antenna operates over a frequency range from 2.7 GHz to 11 GHz to satisfy the 10-dB return-loss requirement and provides band-stop performance in the frequency band from 5.15 GHz to 6.1 GHz. Experimental results reveal that the proposed antenna exhibits good radiation performance and is suitable for UWB applications.

A Sutdy on the UWB Intenna with Band-Stop Function for Mobile Handsets (대역 저지 특성을 갖는 휴대 단말기용 초소형 UWB Intenna에 관한 연구)

  • Lim, Yo-Han;Yoon, Young-Joong;Ho, Yo-Chuol;Jung, Byung-Woon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.12
    • /
    • pp.1445-1454
    • /
    • 2008
  • In this paper, small UWB antenna with band-stop function for mobile handsets is proposed. A gap between radiator and under and side ground is adjusted for small size and broadband. A radiator is folded to the back side of PCB for miniaturization and tapered feeding structure is used to enhance matching characteristic. A antenna clearance has a size of $14{\times}14\;mm^2$ and a size of radiator is $10{\times}7\;mm^2$. It covers all UWB band from 3.15 GHz to 4.75 GHz and from 7.2 GHz to 10.2 GHz for VSWR<2 and has band stop characteristic at 5.8 GHz. A maximum gain is measured as 5.85 GHz. In case conventional handset case is considered, it also covers all UWB and a maximum gain is measured from -2 dBi to -2 dBi.

Design of a Band-Stop Filter for UWB Application (UWB용 대역 저지 필터 설계)

  • Roh Yang-Woon;Hong Seok-Jin;Chung Kyung-Ho;Jung Ji-Hak;Choi Jae-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.2 s.105
    • /
    • pp.89-94
    • /
    • 2006
  • A compact microstrip band-selective filter for ultra-wideband(UWB) radio system is proposed. The filter combines the traditional short-circuited stub highpass filter and coupled resonator band-stop filter on both sides of the mitered 50-ohm microstrip line. To realize the pseudo-highpass filtering characteristic over UWB frequency band(3.1 GHz to 10.6 GHz), a distributed highpass filter scheme is adopted. Three coupled resonators are utilized to obtain the band stop function at the desired frequency band. By meandering the coupled resonators, there is $29\;\%$ size reduction in footprint compared to the traditional band-stop filter using L-shaped resonators. The measured results show that the filter has a wide passband of $146.7\;\%$(2.1 GHz to 10.15 GHz) with low insertion loss and the stop band of $10.04\;\%$(5.2 GHz to 5.75 GHz) for 3-dB bandwidth. The measured group delay is less than 0.7 ns within the passband except the rejection band.

Dispersion Characteristics of Optical Waveguide with Periodic Blazed Grating Profile (주기적인 Blazed 격자로 구성된 광 도파로의 분산 특성)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.2
    • /
    • pp.195-200
    • /
    • 2020
  • Leakage and Bragg condition of optical waveguides with blazed grating profile are evaluated in detail by using novel and rigorous modal transmission-line theory (MTLT) based on eigenvalue problem. The blazed waveguides classified as symmetric, sawtooth and asymmetric gratings occur leaky-wave stop-band at Bragg conditions and anomalies based on Rayleigh condition near Bragg conditions. Furthermore, DFB properties of blazed waveguides at Bragg conditions are analyzed by applying longitudinal equivalent transmission-line with characteristic impedance of periodic grating. The numerical results show that the reflected power of DFB waveguides is maximized at Bragg conditions in which leaky-wave stop-bands occur.