• 제목/요약/키워드: Band GAp Energy

검색결과 708건 처리시간 0.033초

Patterned Arrays of Well-Ordered ZnO Nanorods Assisted with Polystyrene Monolayer By Oxygen Plasma Treatment

  • Choi, Hyun Ji;Lee, Yong-Min;Lee, Yulhee;Seo, Hyeon Jin;Hwang, Ki-Hwan;Kim, Dong In;Yu, Jung-Hoon;Kim, Jee Yun;Nam, Sang Hun;Boo, Jin-Hyo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.146-146
    • /
    • 2016
  • Zinc Oxide (ZnO) was known as a promising material for surface acoustic wave devices, gas sensors, optical devices and solar cells due to piezoelectric material, large band gap of 3.37 eV and large exciton binding energy of 60 meV at room temperature. In particular, the alignment of ZnO nanostructures into ordered nanoarrays can bring about improved sensitivity of devices due to widen the surface area to catch a lot of gas particle. Oxygen plasma treatment is used to specify the nucleation site of round patterned ZnO nanorods growth. Therefore ZnO nanorods were grown on a quartz substrate with patterned polystyrene monolayer by hydrothermal method after oxygen plasma treatment. And then, we carried out nanostructures by adjusting the diameter of the arranged ZnO nanorods according to polystyrene spheres of various sizes. The obtained ZnO nanostructures was characterized by X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM).

  • PDF

Characterization of zinc tin oxide thin films by UHV RF magnetron co-sputter deposition

  • Hong, Seunghwan;Oh, Gyujin;Kim, Eun Kyu
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.307.1-307.1
    • /
    • 2016
  • Amorphous zinc tin oxide (ZTO) thin films are being widely studied for a variety electronic applications such as the transparent conducting oxide (TCO) in the field of photoelectric elements and thin film transistors (TFTs). Thin film transistors (TFTs) with transparent amorphous oxide semiconductors (TAOS) represent a major advance in the field of thin film electronics. Examples of TAOS materials include zinc tin oxide (ZTO), indium gallium zinc oxide (IGZO), indium zinc oxide, and indium zinc tin oxide. Among them, ZTO has good optical and electrical properties (high transmittance and larger than 3eV band gap energy). Furthermore ZTO does not contain indium or gallium and is relatively inexpensive and non-toxic. In this study, ZTO thin films were formed by UHV RF magnetron co-sputter deposition on silicon substrates and sapphires. The films were deposited from ZnO and SnO2 target in an RF argon and oxygen plasma. The deposition condition of ZTO thin films were controlled by RF power and post anneal temperature using rapid thermal annealing (RTA). The deposited and annealed films were characterized by X-ray diffraction (XRD), atomic force microscope (AFM), ultraviolet and visible light (UV-VIS) spectrophotometer.

  • PDF

SiC 웨이퍼의 휨 현상에 대한 열처리 효과

  • 양우성;이원재;신병철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.81-81
    • /
    • 2009
  • 반도체 산업의 중심 소재인 실리콘(Si)은 사용 목적과 환경에 따라 물성적 한계가 표출되기 시작했다. 그래서 각각의 목적에 맞는 재료의 개발이 필요하다는 것을 인식하게 되었다. SiC wafer는 큰 band gap energy와 고온 안정성, 캐리어의 높은 드리프트 속도 그리고 p-n 접합이 용이하다. 또한 소재 자체가 화학적으로 안정하고 $500\sim600^{\circ}C$에서 소자 제조 시 고온공정이 가능하며, 실리콘이나 GaAs에 비해 고출력을 낼 수 있는 재료이다. 반도체 소자로 이용하기 위한 wafer 가공 공정에 있어 물리적 힘에 의한 stress를 많이 받아 wafer가 휘는 현상이 생긴다. 반도체 소자의 기본이 되는 wafer가 휨 현상을 일으키면 wafer 위에 소자가 올라갈 경우 소자의 불균일성 때문에 반도체의 물성에 나쁜 영향을 미치게 된다. 그래서 반도체 소자의 기본이 되는 wafer의 휨 현상 개선이 중요하다. 본 연구에서는 산화로에서 Ar 분위기에서 압력 760torr, 온도 $1100^{\circ}C$ 부근에서의 조건으로 진행을 하여 wafer의 Flatness Tester(FT-900, NIDEK) 장비로 SORI, BOW, GBIR 값의 변화에 초점을 맞추었다. SiC 단결정을 sawing후 가공 전 wafer를 열처리하여 가공을 진행하는 것과 열처리 하지 않은 wafer의 SORI, BOW, GBIR 값 비교, 그리고 lapping, grinding, polishing 등의 가공 진행 중간 중간에 열처리를 하여 진행하는 것과 가공 진행 중간 중간에 열처리를 하지 않고 진행한 wafer의 SORI, BOW, GBIR 값의 비교를 통해 wafer의 휨 현상 개성에 관해 알아본다.

  • PDF

펄스 레이저 증착법에 의한 ZnO:Li 박막 성장과 열처리 효과 (Effect of Thermal Annealing and Growth of ZnO:Li Thin Film by Pulesd Laser Deposition)

  • 홍광준
    • 한국재료학회지
    • /
    • 제15권5호
    • /
    • pp.293-300
    • /
    • 2005
  • ZnO:Li epilayers were synthesized on sapphire substrates by the pulesd laser deposition (PLD) after the surface of the ZnO:Li sintered pellet was irradiated by the ArF (193 nm) excimer laser. The growth temperature was fixed at $400^{\circ}C$. The crystalline structure of epilayers was investigated by the photoluminescence (PL) and double crystal X-ray diffraction (DCXD). The carrier density and mobility of epilayers measured by van der Pauw-Hall method are $2.69\times10cm^{-3}$ and $52.137cm^2/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of epilayers obtained from the absorption spectra is well described by the Varshni's relation, $E_g(T)=3.5128eV{\cdot}(9.51\times10^{-4}eV/K)T^2/(T+280K)$. After the as-grown ZnO:Li epilayer was annealed in Zn atmospheres, oxygen and vaccum the origin of point defects of ZnO:Li has been investigated by PL at 10 K. The Peaks of native defects of $V_{zn},\;V_o,\;Zn_{int},\;and\;O_{int}$ showned on PL spectrum are classified as a donors or accepters type. We confirm that $ZnO:Li/Al_2O_3$ in vacuum do not form the native defects because ZnO:Li epilayers in vacuum existe in the form of stable bonds.

고에너지 질소 이온 주입된 CdS 박막 특성에 관한 연구 (A Study on the Characteristics of High Energy Nitrogen ion Implanted CdS Thin Films)

  • 이재형;홍석주;양계준
    • 한국정보통신학회논문지
    • /
    • 제7권4호
    • /
    • pp.712-718
    • /
    • 2003
  • 진공 증착한 CdS 박막의 질소 이온 주입 효과를 X-선 회절 검사, 광 투과율, 라만 산란 특성을 통하여 조사하였다. 질소 이온 주입하지 않은 CdS 박막은 (0 0 2)면으로의 우선 방위를 가지고 성장하였다. 질소 이온 주입한 시편의 경우 metallic Cd가 형성됨을 XRD 분석 결과 알 수 있었다. 가시광 영역에서의 광투과율은 질소 이온 주입 양이 많아짐에 따라 크게 감소하였다. 또한 질소 이온 주입 양에 따라 CdS 박막의 흡수 계수는 지수 함수적으로 증가하였고, 밴드 갭은 감소하였다 CdS 박막의 라만 peak 위치는 질소 이온 주입 양에 관계없이 299 cm-1로 거의 일정하지만, peak의 FWHM은 이온 주입 양이 증가함에 따라 커졌고, peak 면적은 감소하였다.

펄스레이저 증착법에 의해 성장된 ZnO 박막의 특성 관찰 (Investigating of the Properties of ZnO Film Synthesized by Pulsed Laser Deposition)

  • 최재완;지현진;정창욱;이보화;김규태
    • 한국전기전자재료학회논문지
    • /
    • 제24권2호
    • /
    • pp.108-111
    • /
    • 2011
  • The semiconducting material of ZnO in II-VI group was well known as its good application for photo electronics, chemical sensors and field effect transistors due to the remarkable optical properties with wide energy band gap and great ionic reactivities. Up to now the growth of a good quality of ZnO film has been issued for better performances. Even though there were many deposition methods for making ZnO films, pulse laser deposition methods have been preferred for high crystalline films. In this report, the ZnO film was also created by pulsed laser deposition technique which also showed high crystalinity. By controlling several factors when deposited, it was investigated that the optimal condition for ZnO film formation. Mainly, oxygen partial pressures and growth temperatures were changed when ZnO films were synthesized and followed the characterization by HRXRD and AFM.

Fabrication of Al-doped ZnO Thin Films by Vertical In-line DC Magnetron Sputtering

  • Heo, Gi-Seok;Kim, Tae-Won;Lee, Jong-Ho
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 춘계학술대회 논문집 센서 박막재료연구회 및 광주 전남지부
    • /
    • pp.41-41
    • /
    • 2008
  • Al-doped ZnO (AZO) thin films have been fabricated by vertical in-line dc magnetron sputtering for transparent conducting oxides (TCOs) applications. The effects of substrate temperature and dc power on the characteristics of AZO thin films are investigated and also optimized the process conditions to get the best electrical and optical properties. The fabricated thin films show a good electrical and optical uniformity within ${\pm}5%$ over the whole area of substrate ($200mm\;{\times}\;200mm$) ; the minimum resistivity of $8\;{\times}\;10^{-4}\;{\Omega}cm$ and the average transmittance of 90% within the visible wavelength range. We have found that the band gap ($E_g$) increases with increasing substrate temperature and dc power, whereas the crystallinity is getting improved with increasing substrate temperature. The binding energy of Zn $2p_{3/2}$ and O 1s is observed to decrease as the substrate temperature increases.

  • PDF

CIGS 태양전지의 윈도우 층에 적용되는 ZnO 박막 특성에 관한 온도의 영향 (Effect of Temperature on the Characteristics of ZnO Thin Film Applied to the Window Layer of CIGS Solar Cells)

  • 정경서;권상직;조의식
    • 한국전기전자재료학회논문지
    • /
    • 제26권4호
    • /
    • pp.304-308
    • /
    • 2013
  • For the application to the window layer of $Cu(In,Ga)Se_2$(CIGS) solar cell, zinc oxide(ZnO) thin film was deposited at various temperatures by in-line pulsed DC sputtering. From the structural, optical, and electrical investigation and analysis, it was possible to obtain the lower thickness, the lower resistivity, and the higher transmittance at a higher process temperature. The energy band gap of ZnO was calculated using the transmittance data and was analyzed in terms of the dependency on temperature. From the X-ray diffraction(XRD) results, it was possible to conclude that a dominant peak was found about $34.2{\sim}34.6^{\circ}$(111) and crystallinity was obtained at a temperature above $150^{\circ}C$.

Sputtering Deposition of $CuInSe_{2}$ and $CuInZnSe_{2}$ Thin Films using Mixture Binary Chalcogenide Powders

  • ;국준표;김규호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.257-260
    • /
    • 2007
  • In this study, $CuInSe_{2}$ (CISe) and $CuInZnSe_{2}$ (CIZSe) thin films were prepared on Corning 1737 glass by radio frequency (RF) magnetron sputtering from binary chalcogenide mixed powder targets. The targets were initially prepared by mixing appropriate weights of CuSe, InSe powder and various ZnSe contents. From the film bulk analysis result, it is observed that Zn concentration in the films increases proportionally with the addition of ZnSe in the sputtering targets. Under optimized conditions, CISe and CIZSe thin films grow as a chalcopyrite structure with strong (112), (220/204) and (312/116) reflections. Films are found to exhibit a high absorption coefficient of $10^{4}$ $cm^{-1}$. An increasing of optical band gap from 1.0 eV (CISe) to 1.25 eV (CIZSe) is found to be proportional with an increasing of Zn concentration as expected. All films have a p-type semiconductor characteristic with a carrier concentration in the order of 1014 $cm^{-3}$, a mobility about $10^{1}$ $cm^{2{\cdot}-1}{\cdot}s^{-1}$ and a resistivity at the range of $10^{2}-10^{6}$ W${\cdot}$m.

  • PDF

Prediction of Ultra-High ON/OFF Ratio Nanoelectromechanical Switching from Covalently Bound $C_{60}$ Chains

  • Kim, Han Seul;Kim, Yong-Hoon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.645-645
    • /
    • 2013
  • Applying a first-principles computational approach combining density-functional theory and matrix Green's function calculations, we have studied the effects [2+2] cycloaddition olligormerization of fullerene $C_{60}$ chains on their junction charge transport properties. Analyzing first the microscopic mechanism of the switching realized in recent scanning tunneling microscope (STM) experiments, we found that, in agreement with experimental conclusions, the device characteristics are not significantly affected by the changes in electronic structure of $C_{60}$ chains. It is further predicted that the switching characteristics will sensitively depend on the STM tip metal species and the associated energy level bending direction in the $C_{60}-STM$ tip vacuum gap. Considering infinite $C_{60}$ chains, however, we confirm that unbound $C_{60}$ chains with strong orbital hybridizations and band formation should in principle induce a much higher conductance state. We demonstrate that a nanoelectromechanical approach in which the $C_{60}-STM$ tip distance is maintained at short distances can achieve a metal-independent and drastically improved switching performance based on the intrinsically better electronic connectivity in the bound $C_{60}$ chains.

  • PDF