• 제목/요약/키워드: Ballistic

검색결과 449건 처리시간 0.024초

Fast Noise Reduction Approach in Multifocal Multiphoton Microscopy Based on Monte-Carlo Simulation

  • Kim, Dongmok;Shin, Younghoon;Kwon, Hyuk-Sang
    • Current Optics and Photonics
    • /
    • 제5권4호
    • /
    • pp.421-430
    • /
    • 2021
  • The multifocal multiphoton microscopy (MMM) enables high-speed imaging by the concurrent scanning and detection of multiple foci generated by lenslet array or diffractive optical element. The MMM system mainly suffers from crosstalk generated by scattered emission photons that form ghost images among adjacent channels. The ghost image which is a duplicate of the image acquired in sub-images significantly degrades overall image quality. To eliminate the ghost image, the photon reassignment method was established using maximum likelihood estimation. However, this post-processing method generally takes a longer time than image acquisition. In this regard, we propose a novel strategy for rapid noise reduction in the MMM system based upon Monte-Carlo (MC) simulation. Ballistic signal, scattering signal, and scattering noise of each channel are quantified in terms of photon distribution launched in tissue model based on MC simulation. From the analysis of photon distribution, we successfully eliminated the ghost images in the MMM sub-images. If the priori MC simulation under a certain optical condition is established at once, our simple, but robust post-processing technique will continuously provide the noise-reduced images, while significantly reducing the computational cost.

텔레메트리 시험을 이용한 날개안정형 발사체의 회전감쇠 공력계수 실험적 산출 방법 (An Experimental Method for Obtaining Aerodynamic Roll Damping Coefficients of Fin Stabilized Projectile from Telemetry Experiments)

  • 김진석;김경훈;최재현
    • 한국군사과학기술학회지
    • /
    • 제21권6호
    • /
    • pp.784-789
    • /
    • 2018
  • Accurate aerodynamic characterization of projectile is crucial for successful development of munition. The aerodynamic characterization of fin stabilized projectile is more difficult than characterization of traditional symmetric ballistic projectile. Instrumented free flight experiments were conducted to quantify rolling behavior of fin stabilized projectile. The instrumented projectiles were launched from a rifled tube and the onboard sensor data were acquired through a telemetry transmitter. Roll rate was measured for fin stabilized projectile by means of an angular rate sensor. And, roll damping coefficients were estimated from onboard sensor data acquired during gun firing and trajectory analysis of mathematical model.

추력벡터제어를 이용한 고고도 종말 유도조종 루프 설계 (High-Altitude Terminal Guidance and Control Loop Design Using Thrust Vector Control)

  • 전하민;박종호;유창경
    • 한국항공우주학회지
    • /
    • 제50권6호
    • /
    • pp.393-400
    • /
    • 2022
  • 고고도 교전 시 사용되는 궤도수정 및 자세제어 시스템(Divert and Attitude Control System, DACS)은 고가이며 복잡하다. 본 논문에서는 비교적 단순하고 저가인 추력벡터제어(Thrust Vector Control, TVC)를 탑재한 유도탄의 고고도 종말 유도조종 루프를 제안한다. 본 유도조종 루프는 쿼터니언 피드백 제어기법을 이용하여 진 비례항법유도로 산출된 가속도 명령으로부터 변환된 추력 자세각 명령을 추종하며 유도를 수행한다. 고고도에서 탄도탄에 대한 교전 시뮬레이션을 통하여 제안한 유도조종 루프의 성능을 분석한다.

Simulation, design optimization, and experimental validation of a silver SPND for neutron flux mapping in the Tehran MTR

  • Saghafi, Mahdi;Ayyoubzadeh, Seyed Mohsen;Terman, Mohammad Sadegh
    • Nuclear Engineering and Technology
    • /
    • 제52권12호
    • /
    • pp.2852-2859
    • /
    • 2020
  • This paper deals with the simulation-based design optimization and experimental validation of the characteristics of an in-core silver Self-Powered Neutron Detector (SPND). Optimized dimensions of the SPND are determined by combining Monte Carlo simulations and analytical methods. As a first step, the Monte Carlo transport code MCNPX is used to follow the trajectory and fate of the neutrons emitted from an external source. This simulation is able to seamlessly integrate various phenomena, including neutron slowing-down and shielding effects. Then, the expected number of beta particles and their energy spectrum following a neutron capture reaction in the silver emitter are fetched from the TENDEL database using the JANIS software interface and integrated with the data from the first step to yield the origin and spectrum of the source electrons. Eventually, the MCNPX transport code is used for the Monte Carlo calculation of the ballistic current of beta particles in the various regions of the SPND. Then, the output current and the maximum insulator thickness to avoid breakdown are determined. The optimum design of the SPND is then manufactured and experimental tests are conducted. The calculated design parameters of this detector have been found in good agreement with the obtained experimental results.

RDX를 적용한 다기추진제의 연소 및 강내탄도 특성 (Characteristic Property of Combustion and Internal Ballistics of Triple-Based Propellant including RDX)

  • 손수정;이원민;이우진;권순길;정진영
    • 한국군사과학기술학회지
    • /
    • 제25권3호
    • /
    • pp.321-328
    • /
    • 2022
  • The current development tend of the gun propellants that they should have low sensitivity and high energy. We studied a nitrocellulose based propellant composition that replaced sensitive NG with RDX and DEGDN which high energy and low sensitivity. The important factors in the design of the gun propellant were impetus and flame temperature. NC-based propellant containing RDX showed similar impetus but low flame temperature compared to KM30A1, a triple-based propellant. The developed propellant composition didn't show any abnormal combustion reaction and the characteristics of ballistic resistance were also confirmed.

SI-BASED MAGNETIC TUNNELING TRANSISTOR WITH HIGH TRANSFER RATIO

  • S. H. Jang;Lee, J. H.;T. Kang;Kim, K. Y.
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2003년도 하계학술연구발표회 및 한.일 공동심포지엄
    • /
    • pp.24-24
    • /
    • 2003
  • Metallic magnetoelectronic devices have studied intensively and extensively for last decade because of the scientific interest as well as great technological importance. Recently, the scientific activity in spintronics field is extending to the hybrid devices using ferromagnetic/semiconductor heterostructures and to new ferromagnetic semiconductor materials for future devices. In case of the hybrid device, conductivity mismatch problem for metal/semiconductor interface will be able to circumvent when the device operates in ballistic regime. In this respect, spin-valve transistor, first reported by Monsma, is based on spin dependent transport of hot electrons rather than electron near the Fermi energy. Although the spin-valve transistor showed large magnetocurrent ratio more than 300%, but low transfer ratio of the order of 10$\^$-5/ prevents the potential applications. In order to enhance the collector current, we have prepared magnetic tunneling transistor (MTT) with single ferromagnetic base on Si(100) collector by magnetron sputtering process. We have changed the resistance of tunneling emitter and the thickness of baser layer in the MTT structure to increase collector current. The high transfer ratio of 10$\^$-4/ range at bias voltage of more than 1.8 V, collector current of near l ${\mu}$A, and magnetocurrent ratio or 55% in Si-based MTT are obtained at 77K. These results suggest a promising candidate for future spintronic applications.

  • PDF

Paraffin-based ramjet missile preliminary design

  • Rogerio L.V. Cruz;Carlos A.G. Veras;Olexiy Shynkarenko
    • Advances in aircraft and spacecraft science
    • /
    • 제10권4호
    • /
    • pp.317-334
    • /
    • 2023
  • This paper presents a basic methodology and a set of numerical tools for the preliminary design of solid-fueled ramjet missiles. An elementary code determines the baseline system configuration comprised of warhead, guidance-control, and propulsion masses and geometries from specific correlations found in the literature. Then, the system is refined with the help of external and internal ballistics codes. Equations of motion are solved for the flight's ascending, cruising, and descending stages and the internal ballistic set of equations designs the ramjet engine based on liquefying fuels. The combined tools sized the booster and the ramjet sustainer engines for a long-range missile, intended to transport 200 kg of payload for more than 300 km range flying near 14,000 m altitude at Mach 3.0. The refined system configuration had 600 mm in diameter and 8,500 mm in length with overall mass of 2,128 kg and 890 kg/m3 density. Ramjet engine propellant mass fraction was estimated as 74%. Increased missile range can be attained with paraffin-polyethylene blend burning at near constant regression rate through primary air mass flow rate control and lateral 2-D air intakes.

한반도 원자력 활동 현장 검증을 위한 인력 및 장비 운반에 관한 연구 (Research on Transportation of Personnel and Equipment for Verification of Nuclear Activities on the Korean Peninsula)

  • 한지영;박수희;박제완;김용민
    • 방사선산업학회지
    • /
    • 제17권4호
    • /
    • pp.481-487
    • /
    • 2023
  • After conducting a hydrogen bomb test and launching an intercontinental ballistic missile (ICBM) in 2017, The Democratic People's Republic of Korea (North Korea, D.P.R.K.) declared the completion of its national nuclear capabilities. Currently, North Korea is refusing all nuclear inspections, but the possibility of nuclear inspections and the denuclearization process on the Korean Peninsula still exists. The Republic of Korea (South Korea, Rep. of Korea) has numerous reasons as a neighboring country to participate in North Korea's nuclear inspections and denuclearization, including technological capabilities, geographical proximity, and linguistic benefits. This study assumes nuclear inspections and verification within North Korea and aims to propose scenarios for the transportation and operation of personnel and equipment. The data and results compiled through this research are anticipated to serve as foundational information for future inspections and verifications on the Korean Peninsula. Furthermore, it is assessed that they could contribute to the development of strategies in preparation for participation in denuclearization efforts.

Quantum Transport Simulations of CNTFETs: Performance Assessment and Comparison Study with GNRFETs

  • Wang, Wei;Wang, Huan;Wang, Xueying;Li, Na;Zhu, Changru;Xiao, Guangran;Yang, Xiao;Zhang, Lu;Zhang, Ting
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권5호
    • /
    • pp.615-624
    • /
    • 2014
  • In this paper, we explore the electrical properties and high-frequency performance of carbon nanotube field-effect transistors (CNTFETs), based on the non-equilibrium Green's functions (NEGF) solved self - consistently with Poisson's equations. The calculated results show that CNTFETs exhibit superior performance compared with graphene nanoribbon field-effect transistors (GNRFETs), such as better control ability of the gate on the channel, higher drive current with lower subthreshold leakage current, and lower subthreshold-swing (SS). Due to larger band-structure-limited velocity in CNTFETs, ballistic CNTFETs present better high-frequency performance limit than that of Si MOSFETs. The parameter effects of CNTFETs are also investigated. In addition, to enhance the immunity against short - channel effects (SCE), hetero - material - gate CNTFETs (HMG-CNTFETs) have been proposed, and we present a detailed numerical simulation to analyze the performances of scaling down, and conclude that HMG-CNTFETs can meet the ITRS'10 requirements better than CNTs.

적응 칼만필터에 기반한 우주발사체 추적 성능 개선 (Tracking Performance Enhancement of Space Launch Vehicle Based on Adaptive Kalman Filter)

  • 한유수;송하룡;이인수
    • 한국산업정보학회논문지
    • /
    • 제22권5호
    • /
    • pp.39-49
    • /
    • 2017
  • 인공위성 발사를 위한 우주발사체는 효율적인 비행을 위하여 다단으로 구성이 되며 단분리, 연료점화 및 연소종료 등의 비행이벤트를 거쳐서 임무를 완수하게 된다. 이 과정에서 발사체는 추력이 발생하는 동력비행구간과 추력이 없는 탄도비행구간의 과정을 반복하여 겪게 된다. 이러한 우주 발사체의 비행특성을 하나의 동력학 모델로 표현하기는 어렵기 때문에 다중모델을 사용하는 추적 알고리즘에 대한 연구가 많이 진행되어 왔다. 다중모델 추적 알고리즘을 사용하는 경우에는 추적 성능의 개선을 기대할 수 있지만, 사용할 각 동력학 모델들을 적절히 선정해야 하는 어려움이 있으며 또한 다중모델 사용으로 인해 계산양이 증가하는 단점이 있다. 본 논문에서는 등가속도 모델과 적응형 Singer 모델을 사용하는 두 개의 칼만필터만으로 다양한 비행특성을 가지는 우주발사체를 효과적으로 추적하는 방법을 제안한다.