• 제목/요약/키워드: Ballast Resistance

검색결과 78건 처리시간 0.025초

장대레일 궤도의 좌굴확률평가 시스템 (Buckling Probability Evaluation Framework of CWR Tracks)

  • 배현웅;한승룡;최진유;임남형
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.305-309
    • /
    • 2010
  • The buckling behavior of CWR tracks is affected by the various parameters such as stiffness and geometry of track panel, ballast resistance, rail temperature, initial imperfection, and wheel load. Until now, CWR tracks were managed by the dichotomous logic (deterministic approach) despite these influence factors are having the nature of random variables. So, the design method and existing management process to prevent the track buckling can be very non-economic since the value of these influence factors to calculate the track buckling strength are selected by considering the worst track condition. In this study, buckling probability evaluation process is proposed which is based on the reliability index, AFOSM method, and limit state equation.

  • PDF

궤도보수 작업 조건별 장대레일 축력변화에 관한 연구 (A study on the Longitudinal Force Variation of CWR according to the Condition of Track Maintenance)

  • 원용환;김관형;권순정;이승열
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.99-105
    • /
    • 2009
  • This research presents the method to decide proper locations for destressing of CWR using a non-destructive equipments to measure the longitudinal force(installation temperature) in CWR. The effect and necessity of destressing were analyzed by estimating changes of longitudinal force. The installation temperature was measured to find changes of longitudinal force in high speed and conventional lines before and after destressing or track maintenance at the locations where destressing was planed or where change of longitudinal force was expected during track maintenance. Past destressing was carried out within qualitative decision criteria. This research proposes the quantitative criteria to decide the priority order of the destressing locations reasonably by considering the difference of air temperature and stress free temperature during the track maintenances, the grade of ballast resistance force recovering and the length of destressing, etc.

  • PDF

도상이 장대 레일의 선형 온도 좌굴에 미치는 영향 (Effect of Track Resistance on Linear Thermal Buckling Characteristics of CWR)

  • 강영종;임남형;신정렬;양재성
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1998년도 창립기념 춘계학술대회 논문집
    • /
    • pp.580-587
    • /
    • 1998
  • For many decades, the railway was constructed using tracks with jointed rails of relatively short lengths in accordance with rolling and handling technology. The joints cause many drawbacks in the track and lead to significant maintenance cost. So, railroad engineers became interested in eliminating joints to increase service loads and speeds by improving rolling, welding, and fastening technology, Continuous welded rail(CWR) track has many advantages over the conventional jointed-rail track. But in the case of the elimination of rail joints, it may cause the track to be suddenly buckled laterally by thermal and vehicle loads. Thermal loads are caused by an increase in the temperature of railway track. In this paper, CWR track model and CWRB program are developed for linear buckling analysis using finite element method(FEM). The finite element discretization is used with a total of 14 degrees of freedom for each rail element. The stiffness of the fastener, tie, and ballast bed are included by a set of spring elements. The investigation on the buckling modes and temperature of CWR track is presented in the paper.

  • PDF

고속철도 교량상의 장대레일 축력 해석 (Longitudinal Force Analysis of CWR on High Speed Rail Bridges)

  • 이지하;양신추;이종득
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1998년도 창립기념 춘계학술대회 논문집
    • /
    • pp.556-563
    • /
    • 1998
  • Railway bridges have a significant effect on the stress and displacement of continuous welded rail(CWR). Longitudinal compression force at high temperature, combined breaking or acceleration forces can introduce track buckling. On the other hand, longitudinal tensile forces, associated with low temperatures, in combination with breaking forces may break rail. Therefore, it is very important to work out thorough counter measures for those problems, specially in high speed rail which high safety is required. The exact evaluation of longitudinal force of rail has the key to the solution. The main aim of the present paper is to examine whether the longitudinal force of CWR's on Kyung-Bu-HSR satisfy the criteria to be fulfilled in the design of railway bridge. The analyses are carried out by using "CWRAP" program which was developed by our research group. The ballast resistance and breaking force effects on the longitudinal force of CWR are investigated.

  • PDF

장대레일궤도의 온도좌굴에 영향을 미치는 매개변수 연구 (Parametric Study on Thermal Buckling of CWR Tracks)

  • 최동호;김호배
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2001년도 춘계학술대회 논문집
    • /
    • pp.295-302
    • /
    • 2001
  • The lateral stability of curved continuous welded rail (CWR) is studied fur buckling prevention. This study includes the influences of vehicle induced loads on the thermal buckling behavior of straight and curved CWR tracks. quasi-static loads model is assumed to determine the uplift region, which occurs due to the vertical track deformation induced by wheel loads of vehicle. Parametric numerical analyses are performed to calculate the upper and lower critical buckling temperatures of CWR tracks. The parameters include track lateral resistance, track curvature, longitudinal stiffness, tie-ballast friction coefficient, axle load, truck center spacing, and the ratio of lateral to vertical vehicle load. This study provides a guideline for the improvement or stability for dynamic buckling in on tracks.

  • PDF

열차주행안전을 고려한 궤도패드의 최소 수직 스프링계수 결정에 관한 연구 (A study on determining the minimum vertical spring stiffness of track pad considering running safety.)

  • 김정일;양신추;김연태
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.842-847
    • /
    • 2004
  • This study presents the minimum spring stiffness of resilient track pad considering the safety of running train. A nonlinear static 3-D finite element is used for the modeling of railway superstructure, especially for the reflection of nonlinear resistance of rail fastening system. Moreover, ballast is considered as an elastic foundation. As the input load, eccentric wheel and lateral force are used and they are derived from ' Lateral-force/Wheel-load Estimation Equations '. Analysis results are compared with following two values : allowable lateral displacement of rail head (derived from the geometrical derailment evaluation of wheel/rail) and operation standard value (derived from the field test results of track).

  • PDF

n-형 철침목의 최적형상 개발 (Development of Optimal Shape of n-type Steel Sleeper)

  • 윤희택;장세기;목재균;이준석;김문영
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 추계학술대회 논문집
    • /
    • pp.842-847
    • /
    • 2005
  • In recent railroad markets, the use of steel sleepers is gradually increased due to various advantages in resistance for impact as well as economical efficiency for production, construction. maintenance and recycle. The typical steel sleepers which are successfully used in railroad markets are n-type of Corus Inc. in England and Y-type of ThyssenKrupp Gft Gleistechnik in Germany. Both types have merits and demerits in safety and economical efficiency. In 1990, n-type steel sleeper was developed in Korea, but was failed in putting into practical use, due to the subsidence into the ballast by Jive loads and welding crack, etc.. In this paper, in order to develop optimal shape of n-type steel sleepers for domestic rail mads, parametric studies for cross section, thickness, are performed.

  • PDF

Parametric Study of Thermal Stability on Continuous Welded Rail

  • Choi, Dong-Ho;Na, Ho-Sung
    • International Journal of Railway
    • /
    • 제3권4호
    • /
    • pp.126-133
    • /
    • 2010
  • The thermal buckling analysis of curved continuous welded rail (CWR) is studied for the lateral buckling prevention. This study includes a thermal buckling theory which accounts for both thermal and vehicle loading effects in the evaluation of track stability. The parameters include rail size, track lateral resistance, track longitudinal and torsional stiffnesses, initial misalignment amplitude and wavelength, track curvature, tie-ballast friction coefficient and truck center spacing. Parametric studies are performed to evaluate the effects of the individual parameters on the upper and lower critical buckling temperatures. The results show that the upper critical buckling temperature is highly affected by the uplift due to vehicle loads. This study provides a guideline for the improvement of stability for dynamic buckling in curved CWR track.

  • PDF

정전 탐침법과 유체시뮬레이션을 이용한 DC플라즈마 특성 연구 (Analysis of DC Plasma using Electrostatic Probe and Fluid Simulation)

  • 손의정;김동현;이호준
    • 전기학회논문지
    • /
    • 제63권10호
    • /
    • pp.1417-1422
    • /
    • 2014
  • Using a parallel plate DC plasma system was prepared. Using this equipment, we investigated the basic discharge characteristics of DC argon plasma in terms of electron density, temperature, voltage and current waveforms and plasma potential. The effects of the electrode gap distance, input voltage, ballast resistance and pressure were measured using electrostatic probe. Plasma simulation using fluid approximation has been performed. External circuit effects was included in the simulation. Measured and calculated current voltage characteristics show similar tendencies.

모형시험과 수치해석을 이용한 하중조건 변화에 따른 소형선박의 저항성능 변화에 관한 연구 (Study of Small Craft Resistance under Different Loading Conditions using Model Test and Numerical Simulations)

  • 임준택;마이클;임남균;서광철
    • 해양환경안전학회지
    • /
    • 제29권6호
    • /
    • pp.672-680
    • /
    • 2023
  • 선박의 설계과정에 있어, 선박의 중량은 유체역학적 성능에 큰 영향을 미치는 가장 중요한 요소 중 하나이다. 선박은 일반적으로 최적의 흘수와 배수량을 갖는 하나의 조건으로 설계되지만, 실제로는 연료의 소비, 선박 평형수의 충전과 적재 조건과 같은 운항 활동으로 인해 선박의 중량 및 흘수가 일정 범위 내에서 바뀐다. 본 연구에서는 소형선박을 대상으로 3가지 하중조건에 따른 선박의 저항성능 변화를 모형실험과 수치해석을 통해 연구하였다. 마지막으로 2050년까지 CO2 배출 가스를 50% 감축한다는 국제해사기구(IMO) 목표를 따라 선박의 저항 성능을 개선하여 동력 요구 사항을 줄이기 위해 선박의 중량 변화에 따른 저항성능의 민감도를 연구하였다. 연구 결과, 선박의 중량변화에 따른 효과는 낮은 프루드 수에서 크게 나타나는 것으로 확인되며, 저항성능에 대한 연구 결과, 설계 흘수의 적재조건을 기준으로 배수량이 11.1% 증가하고, 흘수가 5% 증가한 Over load의 적재조건에서 운항 시 선체의 총 저항이 모형시험과 CFD 시뮬레이션에서 각각 15.97%, 14.31%까지 증가하는 것을 볼 수 있다.