• Title/Summary/Keyword: Ball-screw systems

Search Result 63, Processing Time 0.023 seconds

Development of Automation System for Component Inserting of Industrial PCB (산업용 PCB 부품삽입 자동화 시스템 개발)

  • Jeong Gu-Young;Yoon Myoung-Jong;Park Chang-Seog;Yu Kee-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.11
    • /
    • pp.950-955
    • /
    • 2005
  • A automatic component inserting system for industrial PCB is developed in this paper. This system has not been developed in Korea. Most domestic companies produce PCB manually. This process requires highly-skilled staff. Therefor, we developed a PCB inserting system for automation of the process and improved productivity. There are low parts in this system; press, table, tool change and control part. A hybrid press cylinder with pneumatic and hydraulic is used in the press part. The table part consists of pneumatic actuators, stepping motors and ball-screw mechanism. In the tool change part, upper tools can be exchanged automatically for the inserting of various components. The control part consists of motor drivers, PLCs and power supply.

Sliding Mode Control with Friction Observer for a Precise Mechanical System in the Presence of Nonlinear Dynamic Friction

  • Han, Seong-Ik
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.296-304
    • /
    • 2002
  • A position tracking control schemes on the precise mechanical system in presence of nonlinear dynamic friction is proposed. A nonlinear dynamic friction is regarded as the bristle friction model to compensate effects of friction. The conventional sliding mode controller often has been used as a non-model-based friction controller, but it has a poor tracking performance in high-precision position tracking application since it completely cannot compensate the friction effect below a certain precision level. Thus to improve the precise position tracking performance, we propose the sliding mode control method combined with the friction-model-based observer having tunable structure of the transient response. Then this control scheme has a good transient response as well as the high precise tracking performance compared with the conventional sliding mode control without observer and the control system with similar type of observer. The experiments on the bali-screw drive table with the nonlinear dynamic friction show the feasibility of the proposed control scheme.

Pneumatic circuit design and Performance test of Air balancer (에어밸런서 공압 회로의 설계 및 성능 실험)

  • Kim, D.S.;Bae, S.K.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.3 no.3
    • /
    • pp.20-24
    • /
    • 2006
  • Air balancer is a conveyance cargo-handling machine, used in assembly and process lines of car and machining industries. This can lift up an object, the weight of which is from 5 to 200 kg, and moves it to a position. As industrial technologies evolve, it is required to move an object and fit it into a specified position with greater accuracy, rather than performing simple tasks such as lifting objects up and down as conventional ones do. There is also a demand to handle an object with one hand, rather than with two hands,. Through designs of manifold unit for an air balancer function, pilot regulator unit to keep pressure constant, hand unit for an accurate load perception function, and air balancer circuit, this study enables everybody to work it with ease and convenience. Experiments and comparisons were conducted for the performance evaluation of the circuit.

  • PDF

The Couplings for ball-screw on high precision positioning (고정도 이송을 위한 공기정압커플링에 관한 연구)

  • 황성철;전도현;이득우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.161-166
    • /
    • 2002
  • Recently, researches on precision machining of nato-order, especially in the field of optical components and semi-conductors have been under development very actively. A accuracy of machining and positioning in a critical issue in ultra-precision machining. This paper proposes a new positioning system which can give excellent dynamic characteristics and reduce errors in horizontal, vertical, pitching, and yawing motions. In this paper, we suggest a connecting mechanism (the couplings) to reduce motion errors such as chatter and runout while preserving the positioning accuracy. We verified the good performance in the new connecting systems with various coupling types, which we classified into the fixed type, the spring type, the aeroctatic-nozzle type, and the aeroctatic-porous type according to the way of reducing the chatter and error.

  • PDF

Vibration reduction of a pipe conveying fluid using the semi-active electromagnetic damper

  • Kavianipour, Omid
    • Coupled systems mechanics
    • /
    • v.6 no.2
    • /
    • pp.175-187
    • /
    • 2017
  • This paper deals with a uniform cantilever Euler-Bernoulli beam subjected to follower and transversal force at its free end as a model for a pipe conveying fluid under electromagnetic damper force. The electromagnetic damper is composed of a permanent-magnet DC motor, a ball screw and a nut. The main objective of the current work is to reduce the pipe vibration resulting from the fluid velocity and allow it to transform into electric energy. To pursue this goal, the stability and vibration of the beam model was studied using Ritz and Newmark methods. It was observed that increasing the fluid velocity results in a decrease in the motion of the free end of the pipe. The results of simulation showed that the designed semiactive electromagnetic damper controlled by on-off damping control strategy decreased the vibration amplitude of the pipe about 5.9% and regenerated energy nearly 1.9 (mJ/s). It was also revealed that the designed semi-active electromagnetic damper has better performance and more energy regeneration than the passive electromagnetic damper.

Precise contact force control of a flip chip mounting head system

  • Shim, Jaehong;Cho, Youngim;Oh, Yeontaek
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.109.1-109
    • /
    • 2002
  • This paper presents a macro/micro flip chip mounting head system for precise force control. In the proposed macro/ micro system, the macro actuator is conventional do servomotor with a ball screw mechanism and the micro actuator is a voice coil motor(VCM) that consists of four NdFeB magnets and a winded moving coil. For force control, a sensitive strain-gauge force sensor is mounted in the micro actuator. Through harmonic motion between macro and micro actuator, we would like to get precise contact force control when small sized flip chip is mounted on flexible substrate in high speed. In order to show the effectiveness of the proposed macro/micro flip chip mounting head system, we com...

  • PDF

Development of Aircraft 2-Stage Differential GRA (항공기용 2단 차동 GRA 개발)

  • Lee, Kang-Hee;Im, Dae-Jin;Lee, Sun-Hong;Park, Seul-Ki;Choi, Jin-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.6
    • /
    • pp.115-121
    • /
    • 2016
  • The aircraft flight control system controls an aircraft's direction and flying attitude, and actuators are key components of control systems. Actuators can be classified as Geared Rotary Actuator (GRA) and Ball Screw Actuator (BSA). GRA is used in mid-sized aircraft, and BSA is used in larger aircraft. A two-stage differential GRA model was suggested in this paper, and structural analysis and performance tests were performed. According to the analysis and experiment, the stiffness of the two-stage differential GRA was 17.57% higher than that of the conventional GRA, and the structural safety was improved.

Improvement of the Thermal Behavior of the Secondary Part of Synchronous Linear Motors with High Speed and Thrust (고속.대추력 동기식 리니어모터 세컨더리 파트의 열특성 향상)

  • Eun, In-Ung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.4
    • /
    • pp.505-512
    • /
    • 2011
  • Linear permanent magnet synchronous motors utilize high-energy product permanent magnet to produce high thrust, velocity and acceleration. Such motors are finding applications requiring high positioning accuracy and speed response, for example, machine tools, in the absence of mechanical gears and ball screw systems. A disadvantage of the linear motors is high power loss in comparison with rotary motors. For the application of the linear motors to machine tools, it is required to use water coolers and to improve the thermal behavior through insulation and structure optimization or control strategies. This paper presents the function of the secondary part of the linear synchronous motor as to the thermal behavior and the improving method. The result shows cooling pipe combined with an insulation layer is a suitable design for improving of the thermal behavior.

Development of Multi-functional Centerless Grinding System with 600 mm Wide Grinding Wheels (600 mm 급 다기능 광폭 센터리스 연삭시스템 개발)

  • Oh, Jung Soo;Cho, Chang Rae;Tsukishima, Hidehiro;Cho, Soon Joo;Park, Chung Hong;Oh, Jeong Seok;Whang, In Bum;Lee, Won Jae;Kim, Seok Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.11
    • /
    • pp.1129-1137
    • /
    • 2013
  • We report a centerless grinding machine which can perform multi-function with 600 mm wide grinding wheels. By increasing manufacturing area, long workpiece such as camshaft and steering shaft, is allowed to grind more quickly, compared with cylindrical grinding system. In this paper, the design of centerless grinding machine puts emphasis on symmetry to exploit the thermal stability. Results of finite element analysis shows that the difference of the structural deflection in the front and rear guideways is less than $1.5{\mu}m$ due to symmetric design. The difference is less than $3.0{\mu}m$, even though the thermal deformation is considered. According to the performance evaluation, the radial error motion of the G/W spindle, which is measured by applying Donaldson Ball Reversal, is about 1.1${\mu}m$. The yaw error of the G/W slide is improved from 2.1 arcsec to 0.5 arcsec by readjusting the slide preload and ball screw.

Static Analysis and Experimentation on Obstacle-overcoming for a Novel Field Robotic Platform using Flip Motion (Flip 모션을 이용한 신개념 필드 로봇 플랫폼의 큰 장애물 등반 정적 해석 및 실험)

  • Seo, ByungHoon;Shin, Myeongseok;Jeong, Kyungmin;Seo, TaeWon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.10
    • /
    • pp.1067-1072
    • /
    • 2014
  • The ability to overcome obstacles is necessary for field robots for various applications including the ability to climb stairs. While much research has been performed focusing on overcoming obstacles, the resulting robots do not have sufficient ability to overcome obstacles such as stairs. In this research, the purpose is to overcome relatively large obstacles by flipping locomotion through the modification of the stair climbing robotic platform of the previous research. We propose two scenarios to overcome large obstacles: a rear wheel driving system and an elevation system using a ball screw. The research is performed based on static analyses on obstacle-climbing. As the simulation results indicate, we determined the optimal posture of the robot for climbing obstacles for rear wheel driving. Also, an elevation system is analyzed for obstacle climbing. Between the two scenarios an elevation system is determined to reduce the operating torque of the actuator, and the prototype was recently assembled. The climbing ability of the robotic platform is verified. We expect the application area for this robotic platform will be in accident areas of nuclear power plants.