• 제목/요약/키워드: Ball-on-3-ball test

Search Result 331, Processing Time 0.031 seconds

Effect of CrossFit Power Training on TPI OnBaseU Power Test and Golf Performance (크로스핏 파워 트레이닝이 TPI OnBaseU Power Test와 골프 수행력에 미치는 영향)

  • Chang Wook Kim
    • Korean Journal of Applied Biomechanics
    • /
    • v.33 no.4
    • /
    • pp.185-195
    • /
    • 2023
  • Objective: The purpose of this study is to improve TPI OnBaseU Power Test and golf performance by conducting CrossFit power training. Method: Three male golf players from University B participated in this study. They had 3 to 4 years of golf experience and participated in 8 weeks of CrossFit power training. Results: OnBaseU Power Test: There was a lot of improvement in Sit up throw (27.9%) and Chest pass (10.58%), but there was not much improvement in Baseline Toss (R5.9, L9.8%) and Vertical Jump (4.1%). Golf shot data: There was a very statistically significant difference in Club speed, Ball speed, and Total Length, which are related to speed, and there was no difference in Club path and Smash factor, which are related to accuracy and posture. Conclusion: CrossFit power training was effective in improving TPI OnBaseU Power Test and golf performance (Club speed, Ball speed, Total Length).

Fabrication of Aluminium Flake Powder by Ball Milling Process (볼밀링에 의한 알루미늄 프레이크 분말 제조)

  • 이동원
    • Journal of Powder Materials
    • /
    • v.3 no.3
    • /
    • pp.159-166
    • /
    • 1996
  • A series of test were undertaken in order to estabilish the effect of different milling variables on dimension and quality of aluminium flake powder. Milling conditions such as initial powder size, milling container rotation speed, milling time, and ball size were varied to produce aluminium flake powder. Flake powder could then be obtained with size range from 15 $\mu$m to 40 $\mu$m with a maximum specific surface area of 5 $m^{2}$/g by controlling milling conditions. Diameter of milled powders with different milling container rotation speed and ball size were compared with that obtained from theoretical model. The best flake powder was obtained in milling condition of initial powder with average size of 19 $\mu$m, mill container rotation speed of 80 rpm, balls of 9.5 mm diameter, and milling time of 40 hours.

  • PDF

Influence of the Objectionable Stems on the Physical Characteristics during the Cigarette Combustion (부적합 엽맥편이 궐련의 연소중 물리적 특성에 미치는 영향)

  • Kim Soo-Ho;Park Won-Jin;Kim Jong-Yeol;Rhee Moon-Soo
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.28 no.1
    • /
    • pp.23-30
    • /
    • 2006
  • In order to improve the final product quality, tobacco industry has gradually decreased the size and number of steams in the cigarette. Especially, steams bigger than $3{\times}3$ mm($length{\times}thickness$) and $2{\times}10$ mm($width{\times}length$) are not acceptable in the process as objectionable stems. A total number of 12 samples where the $length{\times}tickness$ samples were prepared by decreasing the present sample ($3{\times}3$ mm) with 1 mm up to $1{\times}1$ mm, and the $width{\times}length$ samples were prepared by decreasing the present sample ($2{\times}10$ mm) with 2 mm up to $2{\times}6$ mm for the stems in leaf and stems in expanded cut-tobacco were prepared to apply a fire ball drop test using stems. In addition, cigarettes were produced for these stems in order to analyze the forced fire ball drop including the burning, encapsulation and unencapsulation pressure drop and a single or unspecified direction combustion. Based on the results of the test, it was evident that the fire ball drop in the stems in expanded cut-tobacco presented a lower level than that of the stems in leaf. Also, the stems in expanded cut-tobacco presented a larger swelling and higher burning for a single direction than that of the stem in leaf. In addition, it was considered that the management criteria for objectionable stems should be changed as $3{\times}3$ mm and $2{\times}8$ mm for the $length{\times}thickness$ and $width{\times}length$ sample, respectively, in both steams in leaf and expanded cut-tobacco.

Vibrational Characteristics of High-Speed Motors with Ball Bearings and Gas Foil Bearings Supports (볼 베어링 및 가스 포일 베어링으로 지지되는 소형 고속 전동기의 진동 특성)

  • Seo, Jung Hwa;Kim, Tae Ho
    • Tribology and Lubricants
    • /
    • v.35 no.2
    • /
    • pp.114-122
    • /
    • 2019
  • High-speed rotating machinery requires low cost and reliable bearing elements with low friction, stable rotordynamic characteristics, and a simple design. This study experimentally evaluates the effects of bearing-support elements on the vibrational characteristics of a small-sized, high-speed permanent magnetic motor. A series of coast down tests from 100 krpm characterize the vibrational behaviors, rotor displacement, and housing acceleration of motors supported by ball bearings, ball bearings with a metal mesh damper, and gas foil bearings, respectively. Two eddy-current sensors installed in the horizontal and vertical directions measure the displacement of the rotor at its front nut, and a 3-axis accelerometer attached to the motor housing measures the housing acceleration. The test results reveal that synchronous (1X) vibration components most significantly affect the rotor displacement and housing acceleration, independent of the bearing-support elements. The motor supported by the deep-groove ball bearings results in the largest rotor vibrations increasing with speed; this is due to the absence of a damping mechanism. Additionally, the metal mesh damper effectively reduces the rotor displacement, housing acceleration, and sound-pressure level in the high-speed region (i.e., above 40 krpm), thus implying its substantial damping performance when installed on the outer race of the ball bearing. Lastly, the gas foil bearing supported motor yields the smallest rotor displacement, housing acceleration, and lowest sound-pressure level because of its hydrodynamic airborne operation, which does not require rolling elements that may cause mechanical friction and vibrations.

A Study on the Improvement of Solder Joint Reliability for 153 FC-BGA (153 FC-BGA에서 솔더접합부의 신뢰성 향상에 관한 연구)

  • 장의구;김남훈;유정희;김경섭
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.3
    • /
    • pp.31-36
    • /
    • 2002
  • The 2nd level solder joint reliability of 153 FC-BGA for high-speed SRAM (Static Random Access Memory) with the large chip on laminate substrate comparing to PBGA(Plastic Ball Grid Array) was studied in this paper. This work has been done to understand an influence as the mounting with single side or double sides, structure of package, properties of underfill, properties and thickness of substrate and size of solder ball on the thermal cycling test. It was confirmed that thickness of BT(bismaleimide tiazine) substrate increased from 0.95 mm to 1.20 mm and solder joint fatigue life improved about 30% in the underfill with the low young's modulus. And resistance against the solder ball crack became twice with an increase of the solder ball size from 0.76 mm to 0.89 mm in solder joints.

  • PDF

A Smooth Goodness-of-fit Test Using Selected Sample Quantiles

  • Umbach, Dale;Masoom Ali, M.
    • Journal of the Korean Statistical Society
    • /
    • v.25 no.3
    • /
    • pp.347-358
    • /
    • 1996
  • A new test for goodness-of-fit is presented. It is a modification of a test of LaRiccia (1991). These tests are applicable to continuous lo-cation/scale models. The new test statistic is based on a few selected order statistics taken from the sample, while the LaRiccia test is based directly on the full sample. Each test embeds the hypothesized model in a larger linear model and proceeds to test the goodness-of-fit hy-pothesis by testing the coefficients of this linear model appropriately. The general theory is presented. The tests are compared via computer simulation to a related test of Ali and Umbach (1989) for distributions that could be used as lifetime models. An important aspect of all these tests is that only standard $X_2$ tables are used. Selection of the spacings of the order statistics is discussed.

  • PDF

Thermal-structural Coupled Field Analysis for Fire Safety Type Ball Valve (화재 안전용 볼밸브의 열·구조 연성해석)

  • Kim, Si-Pom;Lee, Joon-Ho;Lee, Kwon-Hee;Jeon, Rock-Won;Do, Tae-Wan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.3
    • /
    • pp.28-32
    • /
    • 2011
  • The safety of transporting equipment in a cryogenic condition is one of important problems under the circumstances that the application weight of natural gas is gradually increasing. As a larger disaster may be generated by leakage of oil or gas from valves in case of fire occurrence of a ship, the present research applied a numerical analysis method on thermal stress distribution and deformation, etc. to the design of ball valves satisfying fire safety test's specification(API607) to prevent this. In addition, the present research progressed fire safety tests and compared the test result with numerical analysis results. The Max stress by parts was confirmed through thermal analysis of major parts to evaluate safety. The fire safety test was progressed according to the regulation of API607.

Shearing Characteristics of Sn3.0AgO.5Cu Solder Ball for Standardization of High Speed Shear Test (고속전단시험의 표준화를 위한 Sn3.0Ag0.5Cu 솔더볼의 전단특성)

  • Jung, Do-Hyun;Lee, Young-Gon;Jung, Jae-Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.1
    • /
    • pp.35-39
    • /
    • 2011
  • Shearing characteristics of Sn-3.0wt%Ag-0.5wt%Cu ball for standardization of high speed shear test were investigated. The solder ball of 450 ${\mu}m$ in diameter was reflowed at $245^{\circ}C$ on FR4 PCB (Printed Circuit Board) to prepare a sample for the high-speed shear test. The metal pads on the PCB were OSP (Organic Solderability Preservative, Cu pad) and ENIG (Electroless Nickel/Immersion Gold, i.e CulNi/Au). Shearing speed was varied from 0.5 to 3.0 m/s, and tip height from 10 to 135 ${\mu}m$. As experimental results, for the OSP pad, a ductile fracture increased with tip height, and it decreased with shearing speed. In the case of ENIG pad, the ductile fracture increased with the tip height. The tip height of 10 ${\mu}m$ (2% of solder ball diameter) was unsuitable since the fracture mode was mostly pad lift. Shear energy increased with increasing shearing tip height from 10 to 135 ${\mu}m$ for both of OSP and ENIG pads.

Characterization of DLC Coated Surface of Fe-3.0%Ni-0.7%Cr-1.4%Mn-X Steel (DLC 코팅한 Fe-3.0%Ni-0.7%Cr-1.4%Mn-X강의 표면특성평가)

  • Jang, Jaecheol;Kim, Song-Hee
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.1
    • /
    • pp.13-19
    • /
    • 2014
  • The various surface treated conditions of Fe-3.0%Ni-0.7%Cr-1.4%Mn-X steel such as as-received, ion nitriding, DLC coated, DLC coated after nitriding for 3 hrs and 6 hrs were investigated to evaluate the beneficial effect for plastic mold steel. Micro Vickers hardness tester was used to estimate nitriding depth from the hardness profile and to measure hardness on the surface. Elastic modulus and residual stress were measured by a nanoindentator. Scratch test and SP (small ball punch test) were utilized to assess the adhesive strength of DLC coating. The depth of nitriding layer was measured as $50{\mu}m$ for the condition of 3 hrs nitriding and $90{\mu}m$ for that of 6 hrs nitriding. Hardness, elastic modulus, residual stress of DLC coating were 20.37 GPa, 162.78 GPa and -1456 MPa respectively. Residual stress on the surface of DLC coating after nitriding could increase to -3914 MPa by introducing nitriding before DLC coating. During the 'Ball-On-Disc' test ${\gamma}^{\prime}$ particles pulled out from the surface of nitrized layer tend to enhance abrasive wear mode since the fraction of ${\gamma}^{\prime}$ (Fe4N) in ion-nitrized layer is known to increases with nitriding time. Thus the specific wear rate of the nitriding layer increased. Comparing with nitriding the specific wear rate in work piece disc as well as ball decreased prominently in DLC coating due to the remarkable reduction in friction coefficient.

The Influence of a Core Stability Exercise Program using Swiss Ball on Muscle Activity and Pain in the Lower Back (스위스 볼을 이용한 등척성, 등장성 운동이 요부 안정화 근육의 근활성도 및 통증에 미치는 영향)

  • Kim, Myung-Hun;Han, Sang-Wan
    • Journal of the Korean Academy of Clinical Electrophysiology
    • /
    • v.9 no.1
    • /
    • pp.9-14
    • /
    • 2011
  • Purpose : The purpose of this study is to examine the influence of a core stability exercise program using Swiss Ball on muscle activity, muscle thickness, maximum muscular strength, and pain in the trunk region during a 6-weeks program involving participants who have lower back pain. Methods : A total of 21 males between the ages of 20 and 33 years old were divided into 3 Swiss Ball exercise groups. Group 1 performed isometric exercises, group 2 performed isotonic exercises, and group 3 performed mixed exercises. Measurements were taken prior to starting the exercise program and after completing the program at the 6-week period using ME6000 to measure muscle activity and VAS to measure pain reduction. Comparisons were made using a paired t-test and ANOVA on SPSS 10.0. Results : There was a statistically significant effect in muscle activity for group 1 and group 3. Secondly, there was a statistically significant effect in pain reduction for group 1, group 2, and group 3. Conclusion : We found that isometric exercises performed by group 1 were effective in improving muscle activity and pain reduction.