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Abstract

A new test for goodness-of-fit is presented. It is a modification of
a test of LaRiccia (1991). These tests are applicable to continuous lo-
cation/scale models. The new test statistic is based on a few selected
order statistics taken from the sample, while the LaRiccia test is based
directly on the full sample. Each test embeds the hypothesized model
in a larger linear model and proceeds to test the goodness-of-fit hy-
pothesis by testing the coefficients of this linear model appropriately.
The general theory is presented. The tests are compared via computer
simulation to a related test of Ali and Umbach (1989) for distributions
that could be used as lifetime models. An important aspect of all these
tests is that only standard x? tables are used. Selection of the spacings
of the order statistics is discussed.
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1. INTRODUCTION

Let F, be a given completely specified continuous distribution function
with density f,. Define the location/scale family of distributions generated
by F, as

Fo = {F|F(2) = F,((z — @)/8), for some —o00 < a < 0o and 0 < 3 < 00}.

Let Xy, < X9, < -+ < X.., be the order statistics corresponding to a ran-
dom sample of size n from a continuous distribution with distribution func-
tion F'. We are to use this information to test the goodness-of-fit hypothesis
Ho :FeF,vs. Hy: F ¢ F,.

Hartley and Pfaffenberger (1972) introduced the idea of testing a goodness-
of-fit hypothesis by the use of quadratic forms based on selected order statis-
tics. Their test, incorporating the probability integral transform, is applicable
to a simple null hypothesis. These ideas were soon expanded in Lurie, Hartley,
and Stroud (1974), Kirmani and Alam (1974), and Mehrotra (1982).

LaRiccia (1991) presents a quantile function based analog to Neyman’s
smooth tests for the location/scale free hypothesis testing situation above. His
tests are based on the complete collection of order statistics. Qur approach is
to use relatively few of the order statistics under a similar setup. The rationale
for this approach is that one should expect a faster rate of convergence to y?
for the test statistics under the null hypothesis when a fixed spacing for a few
of the order statistics is used as compared with the full set of order statistics.

The following definitions and results shall be used throughout the paper.
For fixed F,, define the quantile function by Q,(u) = inf{z|F,(z) > u} and
the density quantile function by ¢,(v) = £,(Q,(u)). Note that for each member

of 7,, Qu) = a+ 8Q,(u).

2. THE LINEAR MODEL

Fix a spacing for r selected order statistics 0 < u; < ug < -+ < u, < 1.
Let n; = [nu] + 1. Let ¥ = (Xnyiny Xnpiny ooy Xnoin). If F € F,, then
Mosteller (1946) implies that Y is asymptotically multivariate normal with

E(Xn,:n) ~oa+ ﬂQo(ui),

Cov(Xn,in, Xn,in) & for & ;.
( PROR PR
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Define W = ((v;)) where v;; = nCov(X,,.n, Xn,n)/B% We note that
W71 f ((u’z’j)> where

wi = (go(ws))*((wir1 —w) ™+ (wg —usq) ™)
Wi+l — —qo(u-;)qo(uz‘+1)(ui+1 - Ui)-l
Wit — Wi+l

w;; — 0 otherwise.

These quantities can be expressed in a myriad of forms. They form the basis of
many testing and estimation procedures as outlined in Sarhan and Greenberg
(1962), David (1981), and Balakrishnan and Cohen (1991).

o test the goodness-of-fit hypothesis, we consider an alternative model
where

k
E(Xnm) ~ a+ BQo(u) + D 6:h;(u)
j=1
B? wi(1 - uy)

CO'U(an:nanJ:n) ~ —
n QO(ui)QO(uj)

for & 3.

for some appropriate functions h(-), ha(:), ..., he(-). Note that this model
has the variance-covariance matrix for error given by (3%/n)W. Let § =
(61, 8a, ..., 6). The goodness-of-fit hypothesis then becomes § = 0, for this
model.

In practice, one wishes to avoid multicollinearity in the linear model.
Thus, the choice of the h functions is crucial. One way to help avoid the
problem is to make %;(u) a function of the hypothesized quantile function
Q,(w). Another good choice for one or more of the h functions is the quantile
function of a likely alternative distribution.

3. TEST PROCEDURES

Now for a fixed spacing, we define

}J:j - (hj(ul)a hj(u2)7"" hj(ur))l
QO - (QO(u1)> QO(UQ)’ SR QO(ur))"

Using these quantities, the X-matrix for a regression analysis based on the
previous linear model can be partitioned as
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Q,)

X1 = (1, Q
(hys by ooy By).

X, =

Now, for i and j = 1, 2, let Cj; = X;'W~ X, forming

Ci1 Ci2
C= .
[ C21 C22 ]

Let CU represent the corresponding elements of C!. Then the regression
estimator of the coefficients (61, 682, ..., 6;)' can be expressed as

é — (Czlxll 1+ C22X21)W—1¥.

Thus, for this model, we have & asymptotically normal with mean § and
variance covariance matrix given by (32/n)C2?2. So under the null hypothesis,
the quadratic form
ng (C?2)"'4
32

is asymptotically x? with k degrees of freedom.

To form a test statistic with a x?(k) distribution under the null hypothesis,
we can replace 8 in the denominator of the quadratic form with any estimator
that converges stochastically to 8 under the null hypothesis. A good choice

seems to be 3
ﬁ = [07 1]011~IX11W_1Y:,

the regression estimator of 8 under the null hypothesis. Thus, we propose
the test statistic Ny )
ng (C*2)"'4
52
for testing the goodness-of-fit hypothesis.

4. MONTE CARLO STUDY

To get a specific test, one needs to determine which k functions one wishes
to use as well as a spacing. In the Monte Carlo study which follows, we
have focussed on distributions for F, whose support is contained in (0, c0),
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which could be considered as lifetime distributions. We considered hy(u) =
Q. (W) In(Qo (), ha(u) = /Q,(u), and h3(u) = (Q,(u))?®. These particular
functions were used by LaRiccia (1991) in his Monte Carlo study. We use
them here so that the results are comparable. Clearly, h; and hy would not be
suitable if the support of F, contained any negative values. Furthermore, if
one can target a specific alternative as plausible, then one could use a function
of the form h(u) = Qi(u), where @1(u) is the quantile function associated
with the standardized form of the targeted alternative distribution.

To investigate the performance of the test statistic, ', a Monte Carlo study
was performed. Each of the three possible pairs of h functions above was
used, along with either 5, 6, or 9 order statistics. For comparative purposes,
LaRiccia’s statistic was also calculated as was the X2 statistic of Ali and
Umbach (1989). Specifically, the statistic T of LaRiccia (eq. 5 and following)
was used. In each case 1000 replications of samples of size 100 from various
distributions were used. Additionally, each block of 1000 replications all
started with the same seed for consistency.

Table 1 presents some selected results designed to check the statistics
as to the accuracy of the x? null distribution. Each of the three statistics
has an asymptotically x? distribution under Ho, X2 with degrees of free-
dom r — 2, and the other two statistics with degrees of freedom & = 2. In
each case 1000 values of the test statistic that were generated using samples
of size 100. Specifically with F,,(z) representing the empirical distribution
function of these 1000 values, F* representing the x%(2) or x(r — 2) distri-
bution function as appropriate, and D = sup,q |Fn(z) — F* ()|, the value of
nl/2D = /1000 D was calculated. Thus, the smaller the value of /1000 D
the more supportive the Monte Carlo study is that the test statistic follows
a x? distribution. In each case a uniform spacing of the order statistics was
used based on either 5 or 9 selected order statistics. The results are reported
in the last four columns of Table 1.

Generally, the values seem fairly supportive of x*-ness of the new test
statistics and X2 for samples of size 100 across a variety of distributions.
In fact, the new statistic performed excellently across the board except for
the case where hy and hy were used for the Weibull distribution with shape
parameter = 4. The same can be said for the X2 statistic except for the
Weibull distribution with shape parameter = 0.5. The generally larger values.
reported for the LaRiccia statistic indicate that the true distribution for the
test statistic for samples of size 100 is not as close to the x?(2) distribution
as the other two statistics. This indicates a generally slower rate of conver-
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gence to the x?(2) distribution for the LaRiccia statistic, at least for uniform
spacings.

Table 2 presents some selected results of a Monte Carlo study designed
to check the power of the various tests. In each case the number of times
(out of 100) that the test statistics fell in the critical region of a 10% test was
calculated for various combinations of hypothesized distributions and distri-
butions actually used to generate the data. In each case, a uniform spacing
was used. These results indicate somewhat poorer power when compared
with the LaRiccia test. However, in conjunction with the results above, this
is to be expected. As expected, the test based on r = 9 order statistics had
better power than the test based on » = 5 order statistics. Surprisingly, the
choice of which two ~ functions to use seems to be immaterial among the
three presented. It would be difficult to generalize here, since the choices
were extremely limited.

One should not expect uniform spacings to be optimal, however. For es-
timation problems based on selected order statistics, it is typically the case
that the optimal spacing is far from uniform under a variety of optimality
criteria. However, with such a large class of distributions in the alternative
hypothesis, it is difficult to attack the problem of improving power analyti-
cally. Another approach is to choose spacings that have proven to be efficient
in other settings.

Umbach and Ali (1993) present an approach to choosing spacings which
are robust for estimation of location and scale parameters. A parametric
hypothesis testing approach which leads to the same results was presented
by Saleh and Sen (1985). Umbach and Ali have computed optimal spacings
under this approach for a few distributions. In particular, they present the
following spacing for the x?(6) distribution.

up = 0.00046, vy = 0.0105, uz = 0.0849, us = 0.8058, us = 0.9625
Using this special spacing, a Monte Carlo study as descnbed above was carried
out. The results are reported in Table 3.

Hassanein (1971) has calculated the spacing that minimizes the general-

ized variance of the ABLUE (asymptotically best linear unbiased estimator).

f (a,8) for the Weibull distribution. In particular, for shape parameter
6 = 4, they present the following optimal spacing

up = .0011, ug = .0127, uz = .0630, uq = .2063, us = .8932, ug = .9824

Using this special spacing, a Monte Carlo study as described above was carried
out. The results are reported in Table 4.
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Table 1. Results of the simulation of 1000 replications for samples of size
100 when the null hypothesis is true. In each case a uniform spacing was
used with » = 5 or 9. (W (§) refers to the Weibull distribution with shape

parameter 6.)
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Kolmogorov-Smirnov /1000 D
Statistic | » | k functions | Hg : x?(2) Hy:x*(6) Hgo:Beta(l,1) Hy :Beta(l,2)
X% 5 0.6348 0.6170 0.6365 0.5464
9 0.9404 0.6088 1.0381 0.7235
LaRiccia hi, he 0.7681 1.1560 1.5367 1.7055
hi, hs 1.7434 1.7632 1.2034 1.2602
hy, hs 1.3548 1.5907 1.2119 1.4439
New 5 hi, ho 0.8616 0.8035 0.9006 0.6408
hi, h3 0.8198 0.7043 0.7793 0.6409
hg, h3 0.8810 0.7442 0.8849 0.5880
9 hy, ha 0.4809 0.5683 0.8260 0.5068
h1, hs 0.6741 0.6376 0.8050 0.8169
ha, hs 0.5165 0.6233 0.7734 0.5462
HQ : W(05) H() . W(15) H() W(Q) HQ W(4)
X2 5 1.7081 0.6086 0.6288 0.6136
9 3.1289 0.6568 0.6318 0.8693
LaRiccia hy, ho 2.7810 0.7580 0.6061 0.8121
h1, h3 2.5890 1.2000 0.8981 1.0032
hy, hs 3.0917 1.0488 0.9379 0.9674
New 5 hy, ho 0.6447 0.9058 0.7713 1.4263
h1, hs 0.5853 0.8645 0.7052 0.6888
ho, hs 0.4878 0.8735 0.6633 0.8060
9 hi1, ho 0.5307 0.5926 0.7108 1.7287
hi, hs 0.8115 0.6844 0.6897 0.7186
ha, h3 0.6404 0.5997 0.7716 0.8306
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Table 2. Results of the simulation of 1000 replications for samples of size
100 when the null hypothesis is false. In each case a uniform spacing was
used with » = 5 or 9. “Number of Rejections” reports the number of times
(out of 1000) that the various test statistics fell in the critical region of a 10%
test. (W (2) refers to the Weibull distribution with shape parameter 2.)

Number of Rejections
True Distribution

Statistic | r | h functions | Hy | x?(2) x%(8) W(2) F(6,2)
X2 5 x2(6) | 130 179 995 698
9 275 117 1000 906

LaRiccia hy, ho 997 225 334 1000
hy, hs 997 221 304 1000

ha, hs3 997 232 307 1000

New 5 hy, ho 448 110 176 989
hi, hs 444 110 175 988

ha, hs 446 108 177 988

9 hi, ho 758 106 211 1000

hi, hs 755 104 196 1000

ha, hs 754 105 200 1000

X2 5 x2(4) | 113 427 895  T75
9 196 615 1000 935

LaRiccia hi, ho 955 665 819 1000
hy, hs3 952 646 810 1000

ha, hs 955 650 806 1000

New 5 hy, ho 292 175 293 975
hy, hs 294 178 289 975

ha, hs 296 178 290 975

9 hi, ho 513 218 401 1000

hi, hs3 526 215 389 1000

kg, hs 518 214 - 388 1000
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Table 3. Results of the simulation of 1000 replications for samples of size
100 for the special spacing 0.00046, 0.0105, 0.0849, 0.8058, 0.9625. “Number
of Rejections” reports the number of times (out of 1000) that the various test
statistics fell in the critical region of a 10% test. (W (2) refers to the Weibull
distribution with shape parameter 2.)

Number of Rejections
True Distribution
Statistic | h functions | Hp | x2(6) | x%(2) x%(8) W(2) F(6,2)
X2 x2(6) | T4 45 125 1000 995
LaRiccia hi, ho 135 997 225 334 1000
hi, hs 138 | 997 221 304 1000
hg, hs3 136 | 997 232 307 1000
New hi, hy 113 | 999 63 86 1000
hi, hs3 145 | 1000 82 102 1000
ho, hs 145 | 1000 76 91 1000

Table 4. Results of the simulation of 1000 replications for samples of size
100 for the uniform spacing with » = 6 and the special spacing 0.0011, 0.0127,
0.0830, 0.2063, 0.8932, 0.9824. “Number of Rejections” reports the number
of times (out of 1000) that the various test statistics fell in the critical region
of a 10% test. (W (8) refers to the Weibull distribution with shape parameter

8.)
Number of Rejections
True Distribution
Statistic | k functions | Ho |W(4) | W(3) W(5) x2(6) Beta(2,2)

LaRiccia hi, ho wW(4) | 131 256 231 999 310
hi, hs3 131 280 238 999 357
hy, hs 135 272 230 999 340

. Uniform Spacing
Xz 121 272 118 1000 106
New hy, ho 109 113 133 614 128
hy, hs 98 136 124 657 151
hy, hj3 97 133 126 652 145

Special Spacing
X2 77 321 115 1000 35
New hi, hy 78 279 56 995 370
hy, hs 81 317 65 996 508
ho, hs 78 305 72 996 456
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5. CONCLUSION

The generally smaller Kolmogrov-Smirnov values reported for the new
statistic in Table 1 indicate that the statistic has a null distribution which is
closer to its limiting y? than the LaRiccia statistic for uniform spacings. This
makes the power comparison in Table 2 more difficult, since the LaRiccia
statistic has a propensity toward large values in general. It is interesting to
note that there were cases when the X2 statistic proved to be superior to both
of the other statistics, e.g. Hy : F = x?(6) with the actual sample arising
from the Weibull distribution with shape parameter = 2, and cases when it
was quite inferior, e.g. Hy : F = x2(6) with the actual sample arising from
the x?(6) distribution.

The results for the special spacings are mixed. The first column of values
in Table 3 indicates that the special spacing for the x2(6) distribution does
not yield a test statistic that is closer to a x? than LaRiccia’s. It’s power is
also generally poorer.

However, Table 4 indicates that for the Weibull distribution with shape
parameter = 4, the special spacing yields an improvement in both power
and significance level over the uniform spacing. The power also compares

favorably with that of LaRiccia’s test in all cases considered, except for the
Weibull(5) case.

Tables 3 and 4 indicate that if a special spacing is to be used instead of
the uniform spacing, care must be taken to insure that it is appropriate for
the distribution in question. These special spacings have not been computed
for many distributions. This makes generalizations difficult as to when it is
appropriate to use them. This study indicates that the new test criterion is
competitive with the LaRiccia test. It seems to be operating very closely to its
advertised a-level over a variety of spacings, especially the uniform spacing,
as is indicated by Tables 1, 3, and 4. Further study may indicate particu-
larly effective spacings and h functions to be used. Information concerning %
functions would most probably be valid for LaRiccia’s test also.
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