• Title/Summary/Keyword: Ball speed

Search Result 623, Processing Time 0.025 seconds

볼 엔드밀을 이용한 난삭재의 고속가공 특성 (High Speed Machining of Difficult-to-cut Material using Ball Endmill)

  • 손창수;강명창;이득우;김종관
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.139-142
    • /
    • 1995
  • Inconel 718 is one of the most difficut workpiece for machining, So it is necessary to evaluate the machining characteristics of Inconel 718 In this study, High speed machining of this material was carried out with Tin coated WC ball endmill and TiN coated HSS ball endmill. The cutting force and shape of machined surface and cip type were investigated according to variation of cutting speed,feed rate and depth of cut

  • PDF

고속 앵귤러 컨택트 볼 베어링의 온도특성 (Temperature Characteristics of High Speed Angular Contact Ball Bearing)

  • 현준수;박태조
    • 한국정밀공학회지
    • /
    • 제18권2호
    • /
    • pp.96-101
    • /
    • 2001
  • This paper shows the temperature characteristics of a high speed angular contact ball gearing which is 7004C type with ISO P2 tolerance class. A built-in motor type high speed spindle which adopts an oil-air lubrication system was used to measure the temperature rise up to 60,000rpm. The gearing temperature was measured using thermocouples that were attached to the outside surfaces of the outer rings. The result showed that the continuous test method which was suggested in this paper is more effective than on and off method and the lubrication oil supply rate should be reduced in high speed rolling bearings as long as the seizure does not occur. And the result were confirmed that the bearings packed with ceramic balls are superior to those with steel balls in temperature characteristics.

  • PDF

High Lead Ball Screw를 사용한 고속이송계의 특성 (The Characteristics of High Speed Feed Drive System using High Lean Screw)

  • 고해주;박성호;정윤교
    • 한국공작기계학회논문집
    • /
    • 제10권4호
    • /
    • pp.97-103
    • /
    • 2001
  • The study on the high-speed machine tool is very important for the improvement of productivity since it can shortens cutting and non-cutting time. Especially, high speed of feed drive system is the major research field. In the industries of the advanced countries, the feed drive systems at the speed of 60 m/min have been already developed based on the high lead ball screws. In this study, a high speed feed drive system at the speed of 60 m/ min has been developed, and its movements characteris-tics are investigated. As the movement characteristics, positioning accuracy, angular accuracy, straightness and micro step-response are measured. Thermal characteristics of the system is also discussed. For measuring the movement characteris-tics, a laser interferometer, a memory-based Hi-coder and a cooling device are used. The experimental results confirm that the movement characteristics and the thermal behavior of the system are satisfactory in the aspect of accuracy and stability.

  • PDF

공기 정압 스핀들을 이용한 고속 볼엔드밀링 가공특성 평가 (A Characteristic of High Speed Ball End Milling Machining using The Air-Spindle)

  • 이종렬;안선일;안지훈;이득우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.922-925
    • /
    • 2000
  • Generally, the machining accuracy in ball end milling directly depends on the rotational accuracy affected by the spindle speeds. The effects of spindle speeds for rotational accuracy in the high speed regions are more dominant than those in the low speed regions. This paper will investigate effects that the Increased speed affects on the rotational error according to the increase of a rotational speed and machining characteristics of the high speed ball-end milling in various rotational speeds and on various materials by using the high speed air-bearing spindle.

  • PDF

고속 회전시 베어링 강성강하를 고려한 주축 유니트의 최적화 (Optimization of Spindle Units Considering the Decrease of Bearing Stiffness at High Speed Revolution)

  • 이찬홍
    • 한국생산제조학회지
    • /
    • 제19권6호
    • /
    • pp.717-723
    • /
    • 2010
  • Radial stiffness of angular contact ball bearings are decreased remarkably at high speed revolution, because the inner and outer ball contact angle with races arc changed under the ball centrifugal forces at high speed. In the past, the optimizations of spindle units were done under the assumption of unchanged bearing stiffness for the whole speed range. But the bearing stiffness is changed and the dimension of optimum spindle is also changed with speed. In the design phase, only one model of many optimum spindle models with speed should be selected. As optimization criterion, the area of transfer function at spindle nose is proposed to estimate simply and accurately improvement of dynamic characteristics in spindle units. Finally, according to many analyses of diverse spindle models with decreased bearing stiffness, the spindle with shorter bearing span is better than longer bearing span from the viewpoint of dynamic characteristics.

HIGH-SPEED MILLING FOR DIE AND MOLD MAKING

  • Na, T.kagawa
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 Handout for 2000 Inter. Machine Tool Technical Seminar
    • /
    • pp.51-60
    • /
    • 2000
  • High-speed milling machine is being sold mainly in the market of die and mold industries, because it reduces machining time greatly as proportion to the spindle speed of machine tool. From the experimental milling tests, it has been cleared that the ball end mill is quite suitable for high speed milling and also tool wear reduces in higher speed milling condition. And a new milling concept with ultra high speed over 100, 000 rpm is proposed for solving the various problems such as NC cutter path generation and NC feed conformity etc.

  • PDF

세라믹 볼베어링의 특성해석에 관한 연구 (A Study on the Characteristics of Ceramic Ball Bearing)

  • 김완두;한동철
    • Tribology and Lubricants
    • /
    • 제8권2호
    • /
    • pp.64-72
    • /
    • 1992
  • The recent trends of rotating machinery demand high speed and high temperature operation, and the bearing with new material is required to be developed. Ceramic, especially silicon nitride, have been receiving attention as alternative material to conventional bearing steel. Ceramic ball bearing offers major performance advantages over steel bearing, for instance, high speed, maginal lubrication, high temperature, improved corrosion resistance and nonmagnetic capabilities etc.. In this paper, the mechanical characteristics of ceramic ball bearing (hybrid ceramic bearing and all ceramic bearing) were investigated, and the characteristics of ceramic bearing were compared with that of steel bearing. Deep groove ball bearing 6208 was taken the object of analysis. The main results of analysis were followings: the radial stiffness of hybrid and all ceramic bearing were 112% and 130% that of steel bearing, and the axial stiffness of all ceramic bearing was 110% that of steel bearing. According as rotating speed was up, the ball load, the contact angle, the contact stress and the spin-to-roll ratio between ball and raceway of ceramic bearing were far smaller than these of steel bearing. And there was not a significant difference between the minimum film thickness of ceramic bearing and steel bearing. It is expected that this research is contributed to enhanced fundamental technology for the practical applications of ceramic ball bearing.

퍼팅 스트로크의 충돌과정에서 나타난 퍼터헤드와 볼의 운동에너지 변화 분석 (Changes of the Kinetic Energy of Putter Head and Ball Movements during the Process of Impact)

  • 박진
    • 한국운동역학회지
    • /
    • 제13권2호
    • /
    • pp.175-183
    • /
    • 2003
  • The purpose of this study was to analyze the kinetic energy of putter head and ball movements during the process of impact. Highly skilled 5 golfers(less than 1 handicap) participated in this study and the target distance was 3 m. Movements of ball and putter head were recorded with 2 VHS video cameras(60 Hz, 1/500 s shutter speed). Small control object($18.5{\times}18.5{\times}78.5\;cm$) was used in this sdtuldy. Analyzing the process of impact, putter was digitized before 0.0835 s and after 0.0835 s of impact. Ball was digitized 0.1336 s after impact. The results showed that the maximum speed was appeared at Impact and prolonged for a while. Contact point of the club head was within 0.7 cm to the z axis. After contacting the club head, the ball was moved above the ground level(slide) and returned to the ground with sliding and rolling. After contacting the ground, the speed of ball was relied on the surface of the ground. During impact, 70% of kinetic energy of club head has been transferred to the ball.

축방향 하중을 받는 고속 세라믹 볼베어링에 대한 EHD 윤활영역에서의 성능 해석 (Performance Analysis of High-Speed Ceramic Ball Bearings Under Thrust Loads in EHD Lubrication)

  • 반종억;김경웅
    • Tribology and Lubricants
    • /
    • 제14권2호
    • /
    • pp.26-34
    • /
    • 1998
  • This paper presents a high-speed performance analysis of ball bearings with ceramic balls under thrust loads. The sliding velocity profiles between a ball and raceways were obtained by the 3-D quasi-dynamic equations of motion including both centrifugal force and gyroscopic moment derived by vector matrix algebra. The friction at the contact areas was obtained by the Bair-Winer's non-Newtonian rheological model and the Hamrock-Dowson's central film thickness in EHL analysis. The nonlinear equations were solved by the Newton-Raphson method and the underrelaxation iterative method. The friction torques and ball behaviors with various loads, ball materials, and contact angles were predicted by this model. It was shown that the friction torque was sensitive to thrust load and contact angle, and that the friction torque and the pitch angle of the bearing with ceramic balls are smaller than those of the bearing with steel balls.

은 플레이크 분말의 입자크기에 미치는 기계적 밀링 공정변수의 영향 (Effect of Mechanical Milling Parameters on the Particle Size of Silver Flake)

  • 이길근;정해영
    • 한국분말재료학회지
    • /
    • 제21권4호
    • /
    • pp.307-312
    • /
    • 2014
  • This study is focused on investigating the relation between the particle size of silver flake powder and mechanical milling parameters. Mechanical milling parameters such as ball size, impeller rotation speed and milling time of the attrition ball-mill were controlled to produce silver flake powder. The particle size of the silver flake powder increased with increasing ball size and impeller rotation speed. The change of the particle size of the silver flake powder with mechanical milling parameters was analyzed based on balls motion in the mill container of the attrition ball-mill. The silver flake particles were formed at the elastic deformation area of the ball due to the collision between balls. The change of the particle size of the silver flake powder with mechanical milling parameters well consists with the change of the collision energy of ball with parameters mentioned above.