• Title/Summary/Keyword: Ball powder

Search Result 589, Processing Time 0.021 seconds

Sintering Behavior of Ball Milled ${MoSi}_{2}$ Powders (볼밀링한 ${MoSi}_{2}$ 분말의 소결거동)

  • 이승익
    • Journal of Powder Materials
    • /
    • v.3 no.3
    • /
    • pp.167-173
    • /
    • 1996
  • The effect of ball milling on the pressureless sintering of MoSi$_2$ was investigated. Ball milling was conducted at 70 rpm for 72 hours using different balls and vessels: one used tungsten carbide balls in a plastic vessel(referred as B-powder) and the other stainless steel ball in a stainless steel vessel(referred as C- powder). The powder was compacted with 173MPa and subsequently sintered at the temperature range of 1150 $^{\circ}C$ and 1450 $^{\circ}C$ in H$_2$, atmosphere. Sintered density was measured and scanning electron micrograph was observed. Over 90% of the theoretical density was attained at 1250 $^{\circ}C$ within 10 minutes for C-powders, while the similar densification required a sintering temperature of 1450 $^{\circ}C$ for B-powders. Such a difference in sinterability between B and C-powders was discussed in terms of the effect of particle size reduction and activated sintering caused by Ni and/or Fe introduced during ball milling.

  • PDF

Synthesis of WS$_2$ Solid Lubricant and Its Application to the Ball Bearing (WS$_2$ 고체윤활제의 합성 및 구름베어링 적용)

  • 신동우;윤대현;최인혁;김경도
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.173-179
    • /
    • 1998
  • The processing conditions for the synthesis of platelet WS$_2$ lubricant powder through the solid-gas reaction were optimized. The tungsten and sulfur powders were sealed in a vacuum of 10$^{-6}$ torr, prior to heat-treating at 850$\circ$C for 8 days. The react~on product showed the well-developed platelet WS$_2$ powder with an average size of 3.8 $\mu$m. The synthesized WS$_2$ powder was coated on the commercial deep grooved ball bearing (No. 6203) to examine the effects of WS$_2$ coating layer on the noise and endurance of the ball bearing. The level of noise obtained from WS$_2$ coated-ball bearing was higher (56 dB) than the value occurred in the case of greece (37 dB). The life-time of the ball-bearing assembled after coating WS$_2$ powder increased 50 times compared to the non-coated bali-bearing.

  • PDF

Ball Milling and Sintering Behavior of High Speed Steel Powders Containing VC and Co (VC 및 Co함유 고속도공구강 분말의 볼밀링 및 소결거동)

  • 김용진
    • Journal of Powder Materials
    • /
    • v.3 no.3
    • /
    • pp.181-187
    • /
    • 1996
  • Cobalt and VC powders were ball milled with M2 grade high speed steel powders under various ball to powder ratios. The powders milled under higher ball to powder ratio become finer, more irregular and have a broader size distribution, and thus possess a lower compressibility and a better sinterability regarding densification. Increasing the ball to powder ratio lowered the sintering temperature to obtain the density level necessary to isolate all the pores. Lowering the sintering temperature is very critical to maintain fine microstructure since grain and carbide coarsening are accelerated by higher sintering temperature due to more liquid phase formation. The powders obtained by ball milling at 20 to 1 ratio has the lowest compressibility but has the best sinterability, almost compatible to unmilled pure M2 powders. A sintered body over 97% theoretical density with fine microstructures having average grain size of ~10 microns was obtained from the powder by sintering at 1260 $^{\circ}C$ for 1 hour in vacuum. XRD results indicate that two types of carbides are mainly present in the sintered structure, MC and $M_{6}C$ type. The MC type carbides are more or less round shaped and mainly located at the grain boundaries whereas the $M_{6}C$ type are angular shaped and mainly located inside the grains.

  • PDF

Fabrication of Silver Flake Powder by the Mechanical Milling Process (기계적 밀링공정에 의한 은 플레이크 분말 제조)

  • Jeong, Hae-Young;Lee, Gil-Geun
    • Journal of Powder Materials
    • /
    • v.23 no.1
    • /
    • pp.54-60
    • /
    • 2016
  • This study focuses on fabricating silver flake powder by a mechanical milling process and investigating the formation of flake-shaped particles during milling. The silver flake powder is fabricated by varying the mechanical milling parameters such as the amount of powder, ball size, impeller rotation speed, and milling time of the attrition ballmill. The particle size of the silver flake powder decreases with increasing amount of powder; however, it increases with increasing impeller rotation speed. The change in the particle size of the silver flake powder is analyzed based on elastic collision between the balls, taking energy loss of the balls due to the powder into consideration. The change in the particle size of the silver flake powder with mechanical milling parameters is consistent with the change in the diameter of the elastic deformation contact area of the ball, due to the collision between the balls, with milling parameters. The flake-shaped silver particles are formed at the elastic deformation contact area of the ball due to the collision.

Effect of Powder Mixing Process on the Characteristics of Hybrid Structure Tungsten Powders with Nano-Micro Size (나노-마이크로 크기 하이브리드 구조 텅스텐 분말특성에 미치는 분말혼합 공정의 영향)

  • Kwon, Na-Yeon;Jeong, Young-Keun;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.24 no.5
    • /
    • pp.384-388
    • /
    • 2017
  • The effect of the mixing method on the characteristics of hybrid-structure W powder with nano and micro sizes is investigated. Fine $WO_3$ powders with sizes of ${\sim}0.6{\mu}m$, prepared by ball milling for 10 h, are mixed with pure W powder with sizes of $12{\mu}m$ by various mixing process. In the case of simple mixing with ball-milled $WO_3$ and micro sized W powders, $WO_3$ particles are locally present in the form of agglomerates in the surface of large W powders, but in the case of ball milling, a relatively uniform distribution of $WO_3$ particles is exhibited. The microstructural observation reveals that the ball milled $WO_3$ powder, heat-treated at $750^{\circ}C$ for 1 h in a hydrogen atmosphere, is fine W particles of ~200 nm or less. The powder mixture prepared by simple mixing and hydrogen reduction exhibits the formation of coarse W particles with agglomeration of the micro sized W powder on the surface. Conversely, in the powder mixture fabricated by ball milling and hydrogen reduction, a uniform distribution of fine W particles forming nano-micro sized hybrid structure is observed.

Thermoelectric Property of Ball Milled Bi-Te-Sb Powder (볼밀링한 Bi-Te-Sb계 분말의 열전특성에 관한 연구)

  • Yu Ji-Hun;Bae Seung-Chul;Ha Gook-Hyun;Kim Byoung-Kee;Lee Gil-Gun
    • Journal of Powder Materials
    • /
    • v.12 no.6 s.53
    • /
    • pp.387-392
    • /
    • 2005
  • The p-type semiconductor $Bi_2Te_3-Sb_2Te_3$ thermoelectric materials were fabricated by melting, milling and sintering process and their thermoelectric properties were characterized. The compound materials were ball-milled with milling time and the powders were sintered by spark plasma sintering process. The ball milled powders had equiaxial shape and approedmately $1\~3{\mu}m$ in size. The figure of meritz of sintered thermoelectric materials decreased with milling time because of lowered electrical resistivity. The thermoelectric properties of $Bi_2Te_3-Sb_2Te_3$ materials have been discussed in terms of electrical property with ball mill process.

Spark-Plasma Sintering of Mechanically-alloyed NiAl Powder and Ball-milled (Ni+Al) Powder Mixture (기계적합금화 NiAl 분말과 볼밀혼합된 (Ni+Al) 분말의 방전플라즈마소결)

  • 장영일;김지순;안인섭;김영도;권영순
    • Journal of Powder Materials
    • /
    • v.7 no.3
    • /
    • pp.161-167
    • /
    • 2000
  • Mechanically-alloyed NiAl powder and ball-milled (Ni+Al) powder mixture were sintered by spark-plasma sintering(SPS) process. Mechanical alloying was performed in a horizontal attritor for 20 h with rotation speed of 600 rpm. (Ni+Al) powder mixtures were prepared by ball milling for 1 and 10 h with 120 rpm. Both powders were sintered at $1150^{\circ}C$ for 5 min under $10^{-3}$ torr vacuum with 50 MPa die pressure in a SPS facility. Sintered densities of 97% and 99% were obtained from mechanically-alloyed NiAl powder and (Ni+Al) powder mixture, respectively. The sintered compact of (Ni+Al) powder mixture showed large grain size by a very rapid grain growth, while the grain size of mechanically-alloyed NiAl powder compact after sintering was extremely fine(80 nm). The difference in densification behavior of both powders were discussed.

  • PDF

Microstructural Change and Sintering Behavior of W-Cu Composite Powders Milled by 3-Dimensional Mixer (3차원 혼합기로 볼밀링한 W-Cu 복합분말의 미세구조 변화와 소결거동)

  • 김진천
    • Journal of Powder Materials
    • /
    • v.5 no.3
    • /
    • pp.210-219
    • /
    • 1998
  • The W-Cu composite powders were synthesized from W and Cu elemental powders by ball-milling process, and their microstructural changes and sintering behaviors were evaluated. The ball milling process was carried out in a 3-dimensional mixer (Turbula mixer) using zirconic ($ZrO_2$) ball and alumina ($Al_2O_3$) vial up to 300 hrs. The ball-milled W-Cu powders revealed nearly spherical shape. Microstructure of the composite powders showed onion-like structure which consists of W and Cu shells due to the moving characteristic of Turbula mixer. The W and Cu elements in the composite powders milled for 300 hrs were homogeneously distributed, and W grain size in the ball-milled powder was smaller than 0.5 $\mu\textrm{m}$. Fe impurity introduced during ball milling process was very low as of 0.001 wt%. The relative sintered density of ball-milled W-Cu specimens reached about 94% after sintering at $1100^{\circ}C$.

  • PDF

Effect of Ce$O_2$ Addition and Powder Treatment on the Sintering of U$O_2$ Powder (Ce$O_2$첨가 및 분말처리가 U$O_2$ 분말의 소결에 미치는 영향)

  • Kim, Hyeong-Su;Lee, Yeong-U;Choe, Chang-Beom;Yang, Myeong-Seung;Jeon, Pung-Il
    • Korean Journal of Materials Research
    • /
    • v.3 no.3
    • /
    • pp.245-252
    • /
    • 1993
  • We investigated the changes of (U, Ce)$O_2$ powder characteristics with $CeO_2$ contents and ball-milling time and then studied on the sintering properties with those (U, Ce)$O_2$ powder characteristics. From the results of this study, it was concluded that the longer ball-milling time of (U, Ce)$O_2$ powder was, the finer its particle size was. Green and sintered densities were decreased with $CeO_2$ contensts increase. And also $CeO_2$ was recongized deteriorating oxide on the $UO_2$ sintering. In case of the lOwt. % $CeO_2$ contents, (U, Ce)$O_2$ sintered pellet which was made of ball-milled powder for 4 hours had few pores and its pores got near to the sphere. And its sintered density had the highest. Because its powder had higher surface area and its packing ratio was appropriated much better than others.

  • PDF

Fabrication of Aluminium Flake Powder by Ball Milling Process (볼밀링에 의한 알루미늄 프레이크 분말 제조)

  • 이동원
    • Journal of Powder Materials
    • /
    • v.3 no.3
    • /
    • pp.159-166
    • /
    • 1996
  • A series of test were undertaken in order to estabilish the effect of different milling variables on dimension and quality of aluminium flake powder. Milling conditions such as initial powder size, milling container rotation speed, milling time, and ball size were varied to produce aluminium flake powder. Flake powder could then be obtained with size range from 15 $\mu$m to 40 $\mu$m with a maximum specific surface area of 5 $m^{2}$/g by controlling milling conditions. Diameter of milled powders with different milling container rotation speed and ball size were compared with that obtained from theoretical model. The best flake powder was obtained in milling condition of initial powder with average size of 19 $\mu$m, mill container rotation speed of 80 rpm, balls of 9.5 mm diameter, and milling time of 40 hours.

  • PDF