• Title/Summary/Keyword: Ball guide

Search Result 65, Processing Time 0.026 seconds

Experimental Control Characteristic Investigation of Ball Bearing Guided Linear Motion Stage with Diamond-like Carbon Coated Guide Rail (DLC 코팅된 가이드레일을 이용한 볼베어링 직선 이송 스테이지의 진공환경 제어 특성 분석)

  • Shim, Jongyoup;Khim, Gyungho;Hwang, Jooho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.4
    • /
    • pp.392-397
    • /
    • 2014
  • Recently, there is an increase in the need for precision linear stages with vacuum compatibility in such areas as lithography equipment for wafer or mask manufacturing, mask mastering equipment for optical data storage and electron beam equipment. A simple design, high stiffness and low cost can be achieved by using ball bearings. However, a ball bearing have friction and wear problems just as in ambient air. In order to decrease the friction, a special finish, a diamond-like carbon (DLC) film coating, is applied to the surface of a guide rail by sputtering deposition. This paper presents the result of an experimental investigation on the control performance of a ball bearing-guided linear motion stage under two environmental conditions: in air and vacuum. A comparison between the results with and without the DLC coating was also considered in the experimental investigation.

Analysis of the Motion Accuracy in Linear Motion Bearing Guide (직선베어링 이송계의 운동정밀도 해석)

  • 김경호;이후상;박천홍;김승우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.179-183
    • /
    • 2000
  • This paper is concerned with achieving the high motion accuracy of linear motion bearing guide according to estimate accuracy average effect of bearing. Accuracy average effect can be obtained b analysis the relationship between motion error of the table and spatial frequency of the rail form error. And influences of ball diameter, ball number, and clock length on block motion error and block number on the table motion error are analyzed theoretically. In addition to, a simple experiment is performed in order to verify theoretical result.

  • PDF

고속 CNC선반 이송계의 열변형 오차 해석

  • 윤원수;김수광;하재룡;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.263-268
    • /
    • 1997
  • Development of a high speed feed drive system has been a major issue for the past few decades in machine tool industries. The reduction of tool change time as well as repid travel time can enhance the productivity. However,the high speed feed drive system generates more heat in nature,which leads to thermal expansion that has adverse effects on the accuracy of machined part. The paper divides the feed drive system into the ball screw and guide way. For each part, the thermal behvior model is separtately developed to estimate the position error of the respective feed drive system that is caused by the thermal expansion. The modified lumped capacitance method is used to analyze the linear position error of the ball screw. The thermal deformation of guide way parts affects the straightness and angular error as well as linear position error. Finite element method is used to estimate the thermal behavior of these guide way parts. The effectiveness of the proposed models are verified through the experiments using laser interferometer.

A Study on Contact angle of the Linear Guide Way (리니어 가이드 웨이의 접촉각에 관한 연구)

  • Lee, Sun-Kon;Park, Young-Gee
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.4
    • /
    • pp.11-16
    • /
    • 2009
  • This research investigates contact angle of Linear Guide Way through a experimental result and theoretical analysis. Since last ten years, most of researchers who concerned with the precision machinery and semiconductor device production etc. so the researches about Linear Guide Way have been unnoticed. The precision machinery and semiconductor device production system has the principle which transfers the mechanical moving to accuracy position control. The Linear Guide Way system has the principle which transfers mechanical moving to accuracy position control is very important to improve performance of the precision machinery and semiconductor device production system. So, In this research, in order to improvement for producing Linear Guide Way, bearing loading analysis and contact angle change through Linear Guide Way theoretical analysis and bearing modeling. Through this study, we may expect that there will be more improvement for producing Linear Guide Way.

Effect of 2nd Axis Linear Motion Guide on Mechanical Performance of Robot in 2-Axis Cartesian Coordinate Robot (2축 직교좌표 로봇에서 2축 직선 운동 가이드가 로봇의 기계적 성능에 미치는 영향)

  • Lee, Jong Shin
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.1
    • /
    • pp.95-103
    • /
    • 2011
  • Robots in various types carry and assemble parts through repeatedly and accurately moving to stored locations by combining linear motions. And, linear systems are used in orthogonal axes of robots and driven via ball screws, such as 2-axis cartesian coordinate robot in this paper. This paper presents the effect of the linear motion guide that is used in $2^{nd}$ axis in 2-axis cartesian coordinate robot. Some simulation results show that the linear motion guide influence greatly in robot performance such as the nominal life of linear guide. When use LM guide that have capacity near in $2^{nd}$ axis, this paper show that the nominal life on LM block of $1^{st}$ axis increases 37.4% and that the specification of $2^{nd}$ axis LM guide influences greatly the nominal life of $1^{st}$ axis LM block.

Characteristics of floating couplings of ball screw for high precision feeding system (고정밀 이송을 위한 볼스크류용 체결기구의 특성에 관한 연구)

  • 김인찬;박천홍;정윤교;이후상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.610-614
    • /
    • 1996
  • As the run out error and misalignment of ball screw connected directly to guide table largely affect the motion accuracy of guideway, floating coupling that releases the table from screw nut except feed and rotational direction is needed todecrease its influences. The purpose of this study is to propose a practical model floating coupling of ball serew for high precision feeding system. The straightness, dynanic characteristics and micro step response of hydrostatic guideway, mounted with three types of coupling fixed type, leaf spring type and hydrostatic type, are tested and compared. From the resuts of experiments, it is proved that a hydrostatic type floating coupling is superior to other couplings and is available to high precision feeding system with ball screw.

  • PDF

A Method to Prevent Transfer Device of Image Stabilizer from Blunting by Artificial Vibration (가진입력에 의한 손떨림 보정용 이송장치의 둔화현상 방지대책)

  • Yeom, Dong-Hae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.11
    • /
    • pp.1076-1079
    • /
    • 2009
  • This article deals with an optical image stabilizer which moves an image sensor in the direction of cancelling the vibration caused by hand shaking to prevent a photographed image from blurring. The ball-guide way method adopted as a transfer device of the image sensor is easy to be manufactured because of its simple structure and is suitable to minimize the friction between mechanisms, but has weakness of a chance of physical defect such as groove and rising. In case that the movement of the transfer device equipped with the image sensor is blunted because a ball is stuck in defects of guide way, the performance of the image stabilizer falls down drastically. We propose a method to prevent the transfer device from blunting by applying artificial vibration. At this time, the artificial vibration should be designed under consideration of dynamic characteristics and specifications of the system to be discriminated from the vibration caused by hand shaking.

Experiment for Position Accuracy Using Laser Scale Unit with 10 Nano-Meter Resoultion (10 nano-meter 분해능을 갖는 laser scale을 이용한 위치 결정 실험)

  • 임선종;정광조;최재완
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.21-26
    • /
    • 2000
  • This paper describes a positioning system for ultra-precision that will be utilized in semiconductor manufacturing field and precision machinery. This system is composed with laser scale unit with 10nm resolution, ball screw with LM guide, brushless DC servo motor, vibration isolator and is equipped in chamber for continuous measuring environment. The dynamic of table, the problem of servo control and the traceability for micro step motion are described. These data will be applied for getting more stable system with 50nm resolution.

  • PDF

Mathematical Modeling of Friction Force in LM Ball Guides (LM 볼가이드 마찰력의 수학적 모델링)

  • Oh, Kwang-Je;Khim, Gyungho;Park, Chun-Hong;Chung, Sung-Chong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.5
    • /
    • pp.423-429
    • /
    • 2015
  • Linear motion (LM) ball guides have good accuracy and high efficiency. They are widely applied for precision machinery such as machine tools, semiconductor fabrication machines and robots. However, friction force incurs heat between the balls and grooves. Thermal expansion due to the heat deteriorates stiffness and accuracy of the LM ball guides. For accurate estimation of stiffness and accuracy during the linear motion, friction models of LM ball guides are required. To formulate accurate frictional models of LM ball guides according to load and preload conditions, rolling and viscous frictional analyses have been performed in this paper. Contact loads between balls and grooves are derived from Hertzian contact analysis. Contact angle variation is incorporated for the precision modeling. Viscous friction model is formulated from the shear stress of lubricant and the contact area between balls and grooves. Experiments confirm validity of the developed friction model for various external load and feedrate conditions.

Automatic Ball Balancer for Vibration Reduction of Rotating Machines (회전기계의 진동저감을 위한 자동볼평형장치)

  • Chung, Jin-Tai
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.59-68
    • /
    • 2005
  • In this study, we establish a theory for dynamic behaviors of an automatic ball balancer, analyze its dynamic characteristics, and provide its design guide line. Equations of motion are derived by using the polar coordinate system instead of the rectangular coordinate system which was previously used in other researches. After non-dimensionalization of the equations, the perturbation method is applied to locate the equilibrium positions and to obtain the linearized equations of motion around the equilibrium positions. The Eigenvalue problem is used to verify the dynamic stability around the equilibrium positions. On the other hand, the time responses are computed from the nonlinear equations of motion by using a time integration method.

  • PDF