Browse > Article
http://dx.doi.org/10.7735/ksmte.2014.23.4.392

Experimental Control Characteristic Investigation of Ball Bearing Guided Linear Motion Stage with Diamond-like Carbon Coated Guide Rail  

Shim, Jongyoup (Ultraprecision Systems Lab., Korea Institute of Machinery and Materials)
Khim, Gyungho (Ultraprecision Systems Lab., Korea Institute of Machinery and Materials)
Hwang, Jooho (Ultraprecision Systems Lab., Korea Institute of Machinery and Materials)
Publication Information
Journal of the Korean Society of Manufacturing Technology Engineers / v.23, no.4, 2014 , pp. 392-397 More about this Journal
Abstract
Recently, there is an increase in the need for precision linear stages with vacuum compatibility in such areas as lithography equipment for wafer or mask manufacturing, mask mastering equipment for optical data storage and electron beam equipment. A simple design, high stiffness and low cost can be achieved by using ball bearings. However, a ball bearing have friction and wear problems just as in ambient air. In order to decrease the friction, a special finish, a diamond-like carbon (DLC) film coating, is applied to the surface of a guide rail by sputtering deposition. This paper presents the result of an experimental investigation on the control performance of a ball bearing-guided linear motion stage under two environmental conditions: in air and vacuum. A comparison between the results with and without the DLC coating was also considered in the experimental investigation.
Keywords
DLC(Diamond-like Carbon) Coating; Ball Bearing; Vacuum; Precision Linear Stage; Control Characteristic Investigation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Moneck, M. T., Okada, T., Fujimori, J., Ksuya, T., Katsumura, M., Lida, T., Kyriyama, K., Lin, W. C., Sokalski, V., Powell, S., Bain, J. A., 2011, Fabrication and Recording of Bit Patterned Media Prepared by Rotary Stage Electron Beam Lithography, IEEE Trans. Magn. 47:10 2656-2659.   DOI
2 Kitahara, H., Uno, Y., Suzuki, H., Kobayashi, T., Tanaka H., Kojima Y., Kobayashi, M., Katsumura, M., Wada, Y., Lida, T., 2010, Electron Beam Recorder for Patterned Media Mastering, Jpn J. Appl. Phys. 49:6s 1-9.
3 Katsumura, M., Sato, M., Hashimoto, K., Hosoda, Y., Kasono, O., Kitahara, H., Kobayashi, M., Lida, T., Kuriyama, K., 2005, Electron Beam Recording beyond 200 Gbit/in2 Density for Next Generation Optical Disk Mastering, Jpn J. Appl. Phys. 44:5B 3578-3582.   DOI
4 Neijzen, J. H. M., Meinders., E. R., Santen, H., 2004, Two-Dimensional Optical Storage Mastering: Adding a New Dimension to Liquid Immersion Mastering, Jpn J. Appl. Phys. 43:7B 5047-5052.   DOI
5 Nadzeyka, A., Peto, L., Bauerdick, S., Mayer, M., Keskinbora, K., Grevent, C., Weigand, M., Hirscher, M., Schutz, G., 2012, Ion beam lithography for direct patterning of high accuracy large area X-ray elements in gold on membranes, Microelec. Eng. 98 198-201.   DOI
6 Basith, M. A., Vitie, S. M., McGrouther, D., Chapman, J. N., Weaver, J. M. R., 2011, Direct comparison of domain wall behavior in permalloy nanowires patterned by electron beam lithography and focused ion beam milling, J. Appl. Phys. 110:8 (083904)1-8.
7 Reyntjens, S., Puers, R., 2001, A review of focused ion beam applications in microsystem technology, J. Micromech. Microeng. 11 287-300.   DOI   ScienceOn
8 Nielsen, E. H., Greibe, T., Mortensen, N. A., Kristensen, A., 2014, Single-spot e-beam lithography for defining large arrays of nano-holes, Microelec. Eng. 121 104-107.   DOI
9 Schenk, C., Buschmann, S., Risse, S., Eberhardt, R., Tunnermann, A., 2008, Comparison between flat aerostatic gas-bearing pads with orifice and porous feedings at high-vacuum conditions, Prec. Eng. 32:4 319-328.   DOI   ScienceOn
10 Fukada, S., Fang, B., Shigeno, A., 2011, Experimental analysis and simulation of nonlinear microscopic behavior of ball screw mechanism for ultra-precision positioning, Prec. Eng. 35:4 650-668.   DOI
11 Peijnenburg, A. T. A., Vermeulen, J. P. M., Eijk, J. V., 2006, Magnetic levitation systems compared to conventional bearing systems, Microelec. Eng. 83 1372-1375.   DOI
12 Gill, S., Rowntree, A., 2010, Liquid Lubricants for Spacecraft Applications, Springer, Netherlands.
13 Bowden, F. P., Tabor, D., 1971, The Friction and Lubrication of Solids, Oxford University Press, London.
14 Wulp, H., With, E., Pistecky, P. V., Spronck, J. W., 1995, Compact, piezo-driven, vacuum compatible rotation device, Rev. Sci. Instrum. 66:11 5339-5343.   DOI
15 Boamfa, M. I., Neijzen, J. H. M., 2005, Two-Dimensional Optical Storage Mastering: Adding a New Dimension to Liquid Immersion Mastering, Jpn J. Appl. Phys. 44:5B 3583-3586.   DOI
16 Maile, B. E., Henschel, W., Kurz, H., Rienks, B., Polman, R., Kaars, P., 2000, Sub-10nm Linewidth and Overlay Performance Achieved with a Fine-Tuned EBPG-5000 TFE Electron Beam Lithography System, Jpn. J. Appl. Phys. 39:12B 6836-6842.   DOI