• Title/Summary/Keyword: Ball control

Search Result 580, Processing Time 0.026 seconds

Generating a Ball Sport Scene in a Virtual Environment

  • Choi, Jongin;Kim, Sookyun;Kim, Sunjeong;Kang, Shinjin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5512-5526
    • /
    • 2019
  • In sports video games, especially ball games, motion capture techniques are used to reproduce the ball-driven performances. The amount of motion data needed to create different situations in which athletes exchange balls is bound to increase exponentially with resolution. This paper proposes how avatars in virtual worlds can not only imitate professional athletes in ball games, but also create and edit their actions effectively. First, various ball-handling movements are recorded using motion sensors. We do not really have to control an actual ball; imitating the motions is enough. Next, motion is created by specifying what to pass the ball through, and then making motion to handle the ball in front of the motion sensor. The ball's occupant then passes the ball to the user-specified target through a motion that imitates the user's, and the process is repeated. The method proposed can be used as a convenient user interface for motion based games for players who handle balls.

Kinematic Calibration of a Cartesian Parallel Manipulator

  • Kim, Han-Sung
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.3
    • /
    • pp.453-460
    • /
    • 2005
  • In this paper, a prototype Cartesian Parallel Manipulator (CPM) is demonstrated, in which a moving platform is connected to a fixed frame by three PRRR limbs. Due to the orthogonal arrangement of the three prismatic joints, it behaves like a conventional X-Y-Z Cartesian robot. However, because all the linear actuators are mounted at the fixed frame, the manipulator may be suitable for applications requiring high speed and accuracy. Using a geometric method and the practical assumption that three revolute joint axes in each limb are parallel to one another, a simple forward kinematics for an actual model is derived, which is expressed in terms of a set of linear equations. Based on the error model, two calibration methods using full position and length measurements are developed. It is shown that for a full position measurement, the solution for the calibration can be obtained analytically. However, since a ball-bar is less expensive and sufficiently accurate for calibration, the kinematic calibration experiment on the prototype machine is performed by using a ball-bar. The effectiveness of the kinematic calibration method with a ball-bar is verified through the well­known circular test.

An Experimental Study on Flow Characteristics for Dual-Structured Orifice (이중구조 오리피스 팽창장치의 유동특성에 관한 실험적 연구)

  • 곽경민;김하덕;이중형;배철호;김종엽
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1039-1046
    • /
    • 2002
  • To investigate the characteristics of orifice as an expansion devices, the experimental apparatus was made and experiments are being peformed using R22 and R290. The main idea of this control method of refrigerant flow rate with coupled orifices is to control the ON/OFF state of T and Ball type orifice corresponding to the subdivided region of thermal load. When system requires minimum thermal load, both T and Ball type orifices are closed, but refrigerant can flow through small hole of T type orifice. In regular thermal load, when ball type orifice is closed, T type orifice is opened and mass flow rate increase more than OFF state of T type orifice, due to large diameter. In maximum thermal load, both T and Ball type orifices are open and the much refrigerant can flow. The flow characteristics on T type orifice and parallel-combined orifice are obtained in the subdivided region of thermal load.

Robust Controller Design of Ball and Beam System Using CDM (구-막대 시스템에서 CDM을 이용한 강인한 제어기의 설계)

  • Lee, Ho-Kee;Yun, Man-Soo;Chung, Chan-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.979-981
    • /
    • 1999
  • This paper designs a ball and beam system using Coefficient Diagram Method (CDM). The ball and beam system is used in many undergraduate control classes to verify a control algorithm or for pure educational purposes. Recently CDM is known to be useful for designing a controller with relatively easy procedure and procedures a low order, no overshoot, and robust controller In this paper. CDM is applied to design a controller for the ball and beam system, and the controller is compared to that of LQG method. The result show that CDM gives better controller than LQG method.

  • PDF

A Visual Detecting System for The Rotation Axis of Golf Ball (영상 기반 회전 골프공 무게중심 검출 시스템)

  • Hyun, Woong-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.2
    • /
    • pp.411-416
    • /
    • 2019
  • In this paper, we describe a measurement system based on vision for detecting the rotation axis of dimpled golf ball. Some golf balls have wrong rotation axis owing to bad production and scratch. A flying golf ball makes sliced or curved motion mainly to owing the wrong rotation axis of golf ball. Dimples of golf ball make a golf ball higher and more straight flying. When we hit a golf ball by driver or iron club, the dimpled ball flies straight and rotates as well. While the ball flying, the rotating axis of the ball convergence. And this makes the ball motion curved. If we hit a golf ball in direction of the rotation axis, the flying ball makes straight motion. In this paper, we develop a control system to detect convergence axis and time of flying golf ball based on vision system. To show validity of the developed system, We experimented several case for dimpled golf balls.

Stabilization Position Control of a Ball-Beam System Using Neural Networks Controller (신경회로망 제어기을 이용한 볼-빔 시스템의 안정화 위치제어)

  • 탁한호;추연규
    • Journal of the Korean Institute of Navigation
    • /
    • v.23 no.3
    • /
    • pp.35-44
    • /
    • 1999
  • This research aims to seek active control of ball-beam position stability by resorting to neural networks whose layers are given bias weights. The controller consists of an LQR (linear quadratic regulator) controller and a neural networks controller in parallel. The latter is used to improve the responses of the established LQR control system, especially when controlling the system with nonlinear factors or modelling errors. For the learning of this control system, the feedback-error learning algorithm is utilized here. While the neural networks controller learns repetitive trajectories on line, feedback errors are back-propagated through neural networks. Convergence is made when the neural networks controller reversely learns and controls the plant. The goals of teaming are to expand the working range of the adaptive control system and to bridge errors owing to nonlinearity by adjusting parameters against the external disturbances and change of the nonlinear plant. The motion equation of the ball-beam system is derived from Newton's law. As the system is strongly nonlinear, lots of researchers have depended on classical systems to control it. Its applications of position control are seen in planes, ships, automobiles and so on. However, the research based on artificial control is quite recent. The current paper compares and analyzes simulation results by way of the LQR controller and the neural network controller in order to prove the efficiency of the neural networks control algorithm against any nonlinear system.

  • PDF

Design Characteristics for Water Lubricated Ball Bearing Retainer (수윤활 볼베어링의 리테이너 설계 특성)

  • Lee Jae-Seon;Choi Suhn;Kim Ji-Ho;Park Keun-Bae;Zee Sung-Quun
    • Tribology and Lubricants
    • /
    • v.21 no.6
    • /
    • pp.278-282
    • /
    • 2005
  • Deep groove ball bearing is installed in a control element of an integral nuclear reactor, where water is used as coolant and lubricant. This bearing is made of STS440C stainless steel for the raceways and the balls to use in radioactive environment and water. It is known that the retainer design affects ball bearing operability and endurance life, however there is no verified retainer design and material for water lubricated ball bearing. Four kinds of retainers are manufactured for the endurance test of water lubricated deep groove ball bearing. Three of them are commercially developed types and the other is designed for this research. It is verified that ball bearings with steel pressed and general plastic retainer can not survive to required life in the water, however bearings with machined type and cylinder type retainer can survive. This proves that one of the major design parameters for water lubricated ball bearing is retainer type and material. In this paper, experimental research of endurance test for water-lubricated ball bearing are reported.

The Effect of Swiss Ball Program on Lower Extremity Function of Elderly with Mild Cognitive Impairment

  • Lee, Yu Jin;Park, Jae Young;Park, Hyun Jeong;Shin, Hee Joon;Choi, Duk Kyu;Shin, Hyung Soo
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.5 no.1
    • /
    • pp.691-695
    • /
    • 2014
  • The purpose of this study was to determine the effects of swiss ball program training on lower extremity function of old elderly with mild cognitive impairment. The subjects were 30 mild cognitive impairment eldrly people aged between 65 and 80, who were divided into the swiss ball program training group(n=15) and the control group(n=15). The swiss ball program training group engaged in a 50-minute exercise session using. Lower extremity function scale of the two groups were measured before and after the intervention. The results are as follows. According to the swiss ball program training conducted to examine the effects of the training on lower extremity function, Moreover, the two groups showed significant differences in lower extremity function. These results indicate that virtual reality training is effective in improving lower extremity function. To conclusion, swiss ball program was found to have a positive effect on elderly lower extremity function. Swiss ball program training can be proposed as a form of fall prevention exercise for the mild cognitive impairment. Swiss ball program may be helpful to reduce the incidence of dementia and behavioral complications.

A Study on the Nonwet Defective Factors of the SMT Process (SMT 공정 Nonwet 불량 인자에 대한 연구)

  • Yun, Chanhyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.3
    • /
    • pp.35-39
    • /
    • 2020
  • Nonwet (Head in Pillow) defect is one of the defects in SMT (surface mount technology) process, the defect is caused by several factors, such as solder paste misalignment, reflow condition, package warpage and package ball size. This paper focused on ① reflow condition ② package ball & solder paste misalignment ③ package ball size for nonwet experiment. The first, on the case of reflow condition, there would be high risk of nonwet defect when the soldering time was increased, but N2 was adopted to reflow process, there could be no or low risk of nonwet defect because of oxidation barrier control. And when the contact depth between Solder ball and solder paste was below 20 ㎛, there could be high risk of nonwet defect. Also smaller package ball would have low risk of nonwet defect.

Effects of Squat Exercise Using Balls on the Gap Interval between Knees, Q-angle, Muscle Activity in Women with Genu-Varum (안굽이무릎을 가진 여성에게 볼을 이용한 스쿼트 운동이 무릎사이 간격과 Q각, 근 활성도에 미치는 효과)

  • Lee, Keoncheol;Han, Jiwon;Bae, Wonsik
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.8 no.2
    • /
    • pp.97-107
    • /
    • 2020
  • Purpose : The purpose of this study is to investigate the effect of squat exercise using a ball on the gap between knees and Q angle of a subject with a genu-varum, and to prove the effect, to provide a clinical basis for developing into a knee correction exercise program. Methods : As a result of posture measurement through GPS, 26 female with genu-varum with a knee length of 5 cm or more were studied. The group was randomly assigned to 13 squat exercise group using ball (experimental group) and 13 general squat exercise groups (control group). The experimental group placed the ball between both knees in a position where the distance between both feet was slightly wider than the shoulder width on a flat support surface, and fixed the ball, and then squat with the start signal. The control group squats without a ball. Each group performed three sets of exercise three times a week for six weeks. Before their exercise, after three and six weeks, EMG, GPS, digital goniometer measurement, the vastus medialis (VM), the vastus lateralis (VL), and the Q-angle were measured in the squat exercise posture. EMG was measured in squat exercise posture. Results : The distance between the knees was reduced. EMG is activated in group A, the group B experimental results showed the high activity of the VL. Q-angle had increased. But the experimental group increased more than the control group. Conclusion : We have confirmed through our experiments that the distance interval between the knees during squat exercises using a ball can be reduced. Furthermore, it would also be helpful to ensure the treatment of genu-varum.