• Title/Summary/Keyword: Ball collision

Search Result 27, Processing Time 0.031 seconds

Effect of Mechanical Milling Parameters on the Particle Size of Silver Flake (은 플레이크 분말의 입자크기에 미치는 기계적 밀링 공정변수의 영향)

  • Lee, Gil-Geun;Jeong, Hae-Young
    • Journal of Powder Materials
    • /
    • v.21 no.4
    • /
    • pp.307-312
    • /
    • 2014
  • This study is focused on investigating the relation between the particle size of silver flake powder and mechanical milling parameters. Mechanical milling parameters such as ball size, impeller rotation speed and milling time of the attrition ball-mill were controlled to produce silver flake powder. The particle size of the silver flake powder increased with increasing ball size and impeller rotation speed. The change of the particle size of the silver flake powder with mechanical milling parameters was analyzed based on balls motion in the mill container of the attrition ball-mill. The silver flake particles were formed at the elastic deformation area of the ball due to the collision between balls. The change of the particle size of the silver flake powder with mechanical milling parameters well consists with the change of the collision energy of ball with parameters mentioned above.

Fabrication of Silver Flake Powder by the Mechanical Milling Process (기계적 밀링공정에 의한 은 플레이크 분말 제조)

  • Jeong, Hae-Young;Lee, Gil-Geun
    • Journal of Powder Materials
    • /
    • v.23 no.1
    • /
    • pp.54-60
    • /
    • 2016
  • This study focuses on fabricating silver flake powder by a mechanical milling process and investigating the formation of flake-shaped particles during milling. The silver flake powder is fabricated by varying the mechanical milling parameters such as the amount of powder, ball size, impeller rotation speed, and milling time of the attrition ballmill. The particle size of the silver flake powder decreases with increasing amount of powder; however, it increases with increasing impeller rotation speed. The change in the particle size of the silver flake powder is analyzed based on elastic collision between the balls, taking energy loss of the balls due to the powder into consideration. The change in the particle size of the silver flake powder with mechanical milling parameters is consistent with the change in the diameter of the elastic deformation contact area of the ball, due to the collision between the balls, with milling parameters. The flake-shaped silver particles are formed at the elastic deformation contact area of the ball due to the collision.

Dynamics in Carom and Three Cushion Billiards

  • Han Inhwan
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.976-984
    • /
    • 2005
  • This paper presents the analysis results of dynamics in the billiards game within the frame­work of rigid-body mechanics and a numerical simulation program. The friction exists between the ball and the table bed as well as between the ball and the rail. There are three parts in the dynamic behavior of the ball on the table bed; motion of the ball on the table bed, collision between balls, and collision between the ball and the cushion. During the development of the simulation program, the dynamics problems such as rolling motion and three-dimensional frictional impact motion have been analyzed in detail. The theoretical issues are implemented into a viable graphic simulation program and its efficacy is demonstrated through the experi­mental validation of the billiards game. The resulting analysis results are verified quantitatively and qualitatively using high-speed video camera. Through the experimental tests, it was found that the physical parameters such as coefficients of restitution and friction vary according to the motion variables and corresponding empirical formulations were developed. The simulation and experimental results agree well.

Two-Dimensional Model Simulation of Balls Motion in a Tumbler-Ball Milling of Metal Powder in Relation with Its Ball Filling Ratio (금속분말의 회전 볼밀링에 있어서 볼 충진율에 따른 볼 거동의 2차원 모델 시뮬레이션)

  • 이길근;김성규;김우열
    • Journal of Powder Materials
    • /
    • v.7 no.4
    • /
    • pp.189-196
    • /
    • 2000
  • Effect of ball filling ratio on the behavior of balls motion and their collision characteristic in a tumbler-ball milling of metal powder are investigated by a computer simulation. The discrete element method and the extended Kelvin model composed of nonlinear spring and nonlinear dashpot were employed in the simulation. It can be possible that analysis of the individual balls motion in a three-dimensional actual mill by the two-dimensional model simulation, since the simulated trajectories of ball paths are in relatively good agreement with the actual ones. It knows that the balls motion in the tumbler-ball mill is strongly influenced by the surface conditions of the balls and mill container wall. The energy consumption of the individual balls during impact and the impact frequency of the individual balls increased with an increase in the ball filling ratio and showed maximum values at about 50-60% ball filling ratio, and then decreased.

  • PDF

Fabrication of Core-Shell Structure of Ni/Au Layer on PMMA Micro-Ball for Flexible Electronics

  • Hong, Sung-Jei;Jeong, Gyu-Wan;Han, Jeong-In
    • Current Photovoltaic Research
    • /
    • v.4 no.4
    • /
    • pp.140-144
    • /
    • 2016
  • In this paper, core-shell structure of nickel/gold (Ni/Au) conductive layer on poly-methyl-methacrylate (PMMA) micro-ball was fabricated and its conduction property was investigated. Firstly, PMMA micro-ball was synthesized by using dispersion polymerization method. Size of the ball was $2.8{\mu}m$ within ${\pm}7%$ deviation, and appropriate elastic deformation of the PMMA micro-ball ranging from 31 to 39% was achieved under 3 kg pressure. Also, 200 nm thick Ni/Au conductive layer was fabricated on the PMMA micro-ball by uniformly depositing with electroless-plating. Adhesion of the conductive layer was optimized with help of surface pre-treatment, and the layer adhered without peeling-off despite of thermal expansion by collision with accelerated electrons. Composite paste containing core-shell structured particles well cured at low temperature of $130^{\circ}C$ while pressing the test chip onto the substrate to make electrical contact, and electrical resistance of the conductive layer showed stable behavior of about $6.0{\Omega}$. Thus, it was known that core-shell structured particle of the Ni/Au conductive layer on PMMA micro-ball was feasible to flexible electronics.

Study of 4-Axis Machining for Ball Gear Cam (볼기어캠의 4-축 가공에 관한 연구)

  • Cho, Hyun-Deog;Shin, Yong-Bum
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.9
    • /
    • pp.81-87
    • /
    • 2019
  • The automatic tool changer of a machining center consists of a tool magazine and a cam box, and the core components of the cam box are a roller gear cam and a turret. Recently, the roller gear cam of a cam box has been replaced by a ball gear cam. In this study, the design and machining method of ball gear cam for an automatic tool changer was studied. Additionally, an algorithm for a 4-axis post processing method was established from an instrumental formula by designing a ball gear cam, thus preventing machining at the bottom of ball end mill and enabling the ball on the turret to be driven at the entrance and exit of a curve without collision due to machining errors. In conclusion, machining using only the 4-axis method including the C-axis on a BC -Type 5-axis machine produced the desired ball gear cam.

Ball Milling of Aluminum Foil Scrap (알루미늄 호일 스크랩의 볼밀링)

  • Hong, Seong-Hyeon;Kim, Byeong-Gi
    • 연구논문집
    • /
    • s.29
    • /
    • pp.131-139
    • /
    • 1999
  • The effect of ball milling conditions in the milling of aluminium foil scraps was studied. Initial foil thickness, ball size. content of oleic acid. weight ratio of mineral spirits/foil. charged amount of foil were varied in wet ball milling process. It is impossible to make flake powders by milling of foil scraps with thickness $120 \mum$. As foil thickness decreases from $60\mum$ to $6.5\mum$, Mean size of powder milled for 30 h decreases from 107 µm to 17 µm. Bigger ball is slightly beneficial for milling of foils to the flake powders due to the larger impact energy produced by them. It is impossible to mill the foil without oleic acid to fabricate the flake powder. As content of oleic acid increases from 1.5 % to 5 %, mean size of flake powder milled for 30 h is drastically decreased. For the mineral spirits content below 50 %, foil scrap was not milled because sliding motion of balls by lubricant effect between balls and wall of container. As weight ratio of mineral spirits and foil increase over 100 %, foils were milled powders with mean powder size 15 - 20 때 irrespective of mineral spirits content due to reduced lubricant effect. As charged amount of foil decreases, mean powder size decreases due to increased collision frequency between ball and foil.

  • PDF

A study on machine simulation application of aircraft parts in 5 axises horizontal machine (항공기 부품의 5축 수평형 공작기계 머신 시뮬레이션 적용에 관한 연구)

  • 이인수;김남경;김해지;장정환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.367-372
    • /
    • 2003
  • This paper shows about the machine simulation embodiment when it happened NC equipment and between workpiece and interference collision at 5 axises processing of aircraft parts. And this research has been chosen because of the highest equipment interference occurrence rate at aircraft parts processing of 5 axises horizontal machine. It can verify simulation and machining process through correlation about their dynamic relations. interference, collision as embodied virtual manufacturing system of machining tool, workpiece, and holder etc. that is necessary element in shape of machine tool and function and processing in imagination ball. Also. it verified about interference and collision between NC equipment parts and workpiece, for applied machine simulation to NC Data of actuality aircraft parts of BULKHEAD and FRAME.

  • PDF

Trajectory Planning of a Soccer Ball Considering Impact Model of Humanoid and Aerodynamics (인간형 로봇의 임팩트 모델과 공기역학을 고려한 축구공의 궤적 계획)

  • So Byung Rok;Yi Byung-Ju;Choi Jae Yeon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.1
    • /
    • pp.58-66
    • /
    • 2005
  • Usual human gait can be modeled as continual impact phenomenon that happens due to the topological change of the kinematic structure of the two feet. The human being adapts his own control algorithm to minimize the ill effect due to the collision with the environment. In order to operate a Humanoid robot like the human being, it is necessary to understand the physics of the impact and to derive an analytical model of the impact. In this paper, specially, we focus on impact analysis of the kicking motion in playing soccer. At the instant of impact, the external impulse exerted on the ball by the foot is an important property. Initially, we introduce the complete external impulse model of the lower-extremity of the human body and analyze the external impulses for several kicking postures of the lower-extremity. Secondly, a trajectory-planning algorithm of a ball, in which the initial velocity and the launch angle of the ball are calculated for a desired trajectory of the ball, will be introduced. The aerodynamic effect such as drag force and lift force is also considered. We carry out numerical simulation and experimentation to verify the effectiveness of the proposed analytical methodology.