• 제목/요약/키워드: Ball Milling

검색결과 824건 처리시간 0.035초

고에너지 볼 밀링을 이용한 Y-산화물 분산 Fe-기초내열합금 분말의 합성 및 미세조직 특성 (Synthesis and Microstructure of Fe-Base Superalloy Powders with Y-Oxide Dispersion by High Energy Ball Milling)

  • 임다미;박종관;오승탁
    • 한국재료학회지
    • /
    • 제25권8호
    • /
    • pp.386-390
    • /
    • 2015
  • Fe-base superalloy powders with $Y_2O_3$ dispersion were prepared by high energy ball milling, followed by spark plasma sintering for consolidation. High-purity elemental powders with different Fe powder sizes of 24 and 50 mm were used for the preparation of $Fe-20Cr-4.5Al-0.5Ti-O.5Y_2O_3$ powder mixtures (wt%). The milling process of the powders was carried out in a horizontal rotary ball mill using a stainless steel vial and balls. The milling times of 1 to 5 h by constant operation (350 rpm, ball-to-powder ratio of 30:1 in weight) or cycle operation (1300 rpm for 4 min and 900 rpm for 1 min, 15:1) were applied. Microstructural observation revealed that the crystalline size of Fe decreased with an increase in milling time by cyclic operation and was about 15 nm after 3 h, forming a FeCr alloy phase. The cyclic operation had an advantage over constant milling in that a smaller-agglomerated structure was obtained. The milled powders were sintered at $1100^{\circ}C$ for 30 min in vacuum. With an increase in milling time, the sintered specimen showed a more homogeneous microstructure. In addition, a homogenous distribution of Y-compound particles in the grain boundary was confirmed by EDX analysis.

고속 볼 엔드밀 가공에서 절삭속도 최적화 (Optimization cutting speed in high speed ball end milling)

  • 김경균;강명창;정융호;이득우;김정석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.895-898
    • /
    • 2001
  • This paper presents an optimization cutting speed(OCS) program developed to improve the machining precision and tool life in high speed machining using ball end milling. This program optimized the cutting speed that is changing at any time in free surface machining of an automobile part like a connecting load die. The technique of optimization cutting speed makes the CAD/CAM-generated NC code go through a reverse post process, conducts cutting simulation, and obtain the effective tool diameter of the ball end milling. Then it changes the spindle revolution to within the range of critical cutting speed fit for the material of the workpieces depending upon the effective tool diameter. In this study, the machining precision and tool life were compared for the two connecting load dies processed using the general cutting method and the proposed optimization cutting speed technique, respectively.

  • PDF

기계적 합금화법에 의한 Al/AlN 복합체 제조 및 PCA 영향 (Synthesis of Al/AlN Composites by Mechanical Alloying and the Effect of PCA on Their Properties)

  • 김석현;김용진;안중호
    • 한국분말재료학회지
    • /
    • 제18권3호
    • /
    • pp.238-243
    • /
    • 2011
  • Al/AlN composites were synthesized by mechanical alloying using process control agents(PCAs). Three different PCAs which contain N element, were examined to see the effectiveness of ball-milling and the nitridation during sintering. Among examined PCAs, $C_8H_6N_4O_5$ was the most effective to facilitate ball-milling and to form nitrides during a subsequent sintering. By a proper control of ball-milling and sintering, we could obtained surface-hardened Al-based composites.

분산법이 무전해 Ni-CNT 복합도금막 형성에 미치는 영향 (Effect of Dispersion Method on Formation of Electroless Ni-CNT Coatings)

  • 배규식
    • 반도체디스플레이기술학회지
    • /
    • 제13권3호
    • /
    • pp.51-55
    • /
    • 2014
  • Ni-CNT(Carbon Nanotubes) composite coating is often used for the surface treatment of mechanical/electronic devices to improve the properties of the Ni coating. For the Ni-CNT coating, the dispersion of CNT fibers is a critical process. In this study, ultrasonic treatment instead of the conventional ball milling was attempted as a dispersion method for the electroless Ni-CNT coating. SEM-EDX analysis was performed and contact angle, sheet resistance, and micro-hardness were measured. Results showed that the ultrasonic treatment was comparable to the ball milling, as a dispersion method, but the difference was negligible. However, combined ball milling and ultrasonic treatment(double treatment) showed much improved micro-hardness value, above 350Hv(close to the value obtained by the Ni-CNT electroplating). In addition, electroless Ni-CNT(double-treated) coatings formed on the thin Ni film deposited by the electroless plating(double coating) showed better mechanical properties. Thus, double treatment and double coating are suggested as an improved electroless Ni-CNT coating method.

극저온 볼 밀링을 통한 Ibuprofen 분말의 마이크로화 (Micronization of Ibuprofen by Cryogenic Ball Milling)

  • 조현갑;이경엽;백영남;박훈재;이상목
    • 한국정밀공학회지
    • /
    • 제21권11호
    • /
    • pp.195-199
    • /
    • 2004
  • For the present study, the cryogenic ball milling process was applied to make Ibuprofen microsized. The cryogenic ball milling was performed at low temperature of about -18$0^{\circ}C$ for 6 hours. The particle size distribution was determined before and after the cryogenic process. X-ray diffraction (XRD) measurement was made to determine the effect of cryogenic process on the crystallinity of Ibuprofen. The results showed that the size of Ibuproffn was reduced about 10 times by the cryogenic process. The degree of crystallinity of Ibuproffn was slightly reduced by the cryogenic process.

알루미늄 호일 스크랩 재활용에 의한 플레이크 분말 제조 (Preparation of Aluminum Flake Powder by Recycling of Foil Scrap)

  • 홍성현;김병기
    • 자원리싸이클링
    • /
    • 제9권4호
    • /
    • pp.50-55
    • /
    • 2000
  • 알루미늄 호일 스크랩의 건식 및 습식 볼밀링에 의하여 알루미늄 플레이크 분말을 체조하는 재활용 기술에 대해 여 연구하였다. 볼밀링시 알루미늄 호일 스크랩들은 볼에 의한 미소 단조에 의하여 서로 층상으로 겹쳐지고 연산되면서 작은 호일로 쪼개진 후 플레이크 분말로 변하였다. 이러한 스크랩중에 $60\mu\textrm{m}$ 이하의 호일 스크랩은 볼밀링에 의하여 알루미늄 페이스트로 재활용이 가능하였고 초기 호일의 두께가 작을수록 쉽게 플레이크 분말화가 가능 하였다. 알루미늄 호일 스크랩의 봉밀링에 의하여 얻은 풀레이크 분말을 함유하는 알루미늄 페이스트와 가스 분사된 분말을 초기원료로 사용하여 불밀링한 플레이크 분말을 함유하는 페]이스트를 유리관위에 폐인팅한 후 외관 및 광택도를 비교한 결과, 그 특성은 유사하였다.

  • PDF

폐실리콘의 고에너지 밀링 과정에서 초기 입자 크기가 분말의 미세화에 미치는 효과 (Effect of Initial Silicon Scrap Size on Powder Refining Process During High Energy Ball Milling (HEBM))

  • 송준우;김효섭;김성신;구자명;홍순직
    • 한국분말재료학회지
    • /
    • 제17권3호
    • /
    • pp.242-250
    • /
    • 2010
  • In this research, the optimal manufacturing conditions of fine Si powders from Si scrap were investigated as a function of different initial powder size using the high-energy ball milling equipment, which produces the fine powder by means of an ultra high-energy within a short duration. The morphological change of the powders according to the milling time was observed by Scanning electron microscopy (SEM). With the increasing milling time, the size of Si powder was decreased. In addition, more energy and stress for milling were required with the decreasing initial powder size. The refinement of Si scrap was rapidly carried out at 10min ball milling time. However, the refined powder started to agglomerate at 30 min milling time, while the powder size became uniform at 60 min milling time.

W-Cu 복합분말의 제조를 위한 기계화학적 공정에서 볼 밀링 시간에 따른 환원거동 (Effect of Ball-milling Time on Reduction Behavior in Mechanochemical Process for Preparation of W-Cu Composite Powders)

  • 김대건;이강원;석명진;김영도
    • 한국재료학회지
    • /
    • 제13권3호
    • /
    • pp.169-173
    • /
    • 2003
  • W-Cu composite powders can be prepared by mechanochemical process, where the $WO_3$-CuO composite powders were mechanically synthesized from the elemental oxide powders and subsequently reduced to W-Cu composite powders. In the present work, reduction behavior of$ WO_3$-CuO composite powders that were synthesized at different milling time was examined in terms of hygrometric analysis. In case of $WO_3$-CuO ball-milled for 20 h, the reaction temperature of CuO\longrightarrowCu became lower than in case of 1 h. Also, the reaction of $WO_3$\longrightarrow$WO_{2.9-2.72}$ and $WO_{2.9-2.72}$ \longrightarrow$WO_2$were shifted to lower temperatures and the peaks were changed to much sharper shape. While the reaction of $WO_2$\longrightarrowW in case of ball-milling for 20 h started at lower temperature, the peak temperature was the same as in 1 h ball-milling. The reduced W particle size was somewhat finer fer 20 h ball-milling. It was considered that the refinement of oxide particles caused by ball-milling process leads to such a change in the reduction behavior.