DOI QR코드

DOI QR Code

Synthesis of Al/AlN Composites by Mechanical Alloying and the Effect of PCA on Their Properties

기계적 합금화법에 의한 Al/AlN 복합체 제조 및 PCA 영향

  • Kim, Seok-Hyeoun (School of Material Engineering, Andong National University) ;
  • Kim, Yong-Jin (Functional Materials Divisiom, Korea Institute of Materials Science) ;
  • Ahn, Jung-Ho (School of Material Engineering, Andong National University)
  • 김석현 (안동대학교 신소재공학부) ;
  • 김용진 (재료연구소 기능재료연구그룹) ;
  • 안중호 (안동대학교 신소재공학부)
  • Received : 2011.02.10
  • Accepted : 2011.04.25
  • Published : 2011.06.28

Abstract

Al/AlN composites were synthesized by mechanical alloying using process control agents(PCAs). Three different PCAs which contain N element, were examined to see the effectiveness of ball-milling and the nitridation during sintering. Among examined PCAs, $C_8H_6N_4O_5$ was the most effective to facilitate ball-milling and to form nitrides during a subsequent sintering. By a proper control of ball-milling and sintering, we could obtained surface-hardened Al-based composites.

Keywords

References

  1. I. Dutta, S. Mitra and J. Cooper: Mat. Res. Soc. Symp. Proc., 264 (1992) 395. https://doi.org/10.1557/PROC-264-395
  2. S. Loughin, R. H. French, W. Y. Ching, Y. N. Xu and G. A. Slack: Appl. Phys. Lett., 6 (1993) 1182.
  3. A. F. Wright: J. Appl. Phys., 82 (1997) 2833. https://doi.org/10.1063/1.366114
  4. Eliseo Ruiz, Santiago Alvarez and Pere Alemany: Phys. Rev. B, 49 (1994) 7115. https://doi.org/10.1103/PhysRevB.49.7115
  5. S. H. Yu, Y. S. Lee and K.-S. Shin: J. Korean Powder Metall. Inst., 12 (2005) 214. (Korean) https://doi.org/10.4150/KPMI.2005.12.3.214
  6. J. Cintas, F. G. cuevas, J. M. Montes and E. J. Herrera: Scripta Mater., 53 (2005) 1165.
  7. H. Abdoli, H. Asgharzadeh and E. Salahi: Journal of Alloys and Compounds, 473 (2009) 116. https://doi.org/10.1016/j.jallcom.2008.05.069
  8. F. Delannay, L. Froyen and A. Deruyttere: J. Mater. Sci., 22 (1987) 1. https://doi.org/10.1007/BF01160545
  9. G. Elssner and G. Petzow: ISIJ International, 30 (1990) 1011. https://doi.org/10.2355/isijinternational.30.1011
  10. Pere Alemany: Surf. Sci., 314 (1994) 114. https://doi.org/10.1016/0039-6028(94)90218-6
  11. Koji Atarashiya: J. Mater. Process. Tech., 54 (1995) 54. https://doi.org/10.1016/0924-0136(95)01919-7
  12. J. M. Haussonne, J. Lostec, J. P. Bertot, L. Lostec and S. Sadou: J Am. Ceram. Soc. Bull., 72 (1993) 84.
  13. Y. Miyazawa, H. Ueshimo, Y. Hashizume and E. Uchimura: Journal of Japan Institude of Metal and Materials, 27 (1988) 486.
  14. J. H. Ahn, Y. J. Kim and H. S. Chung: Rev. Adv. Mater. Sci., 18 (2008) 329.
  15. G. B. Schaffer, B. J. hall, S. J. Bonner, S. H. Huo and T. B. Sercombe: Acta Mater., 54 (2006) 131.
  16. H. U. Joo and W. S. Jung: J. Mater. Process. Tech., 204 (2008) 498. https://doi.org/10.1016/j.jmatprotec.2008.01.028
  17. A. Maghsoudipour, M. A. Bahrevar, J. G. heinrich and F. Moztarzadeh: J. Eu. Ceram. Soc., 25 (2005) 1067. https://doi.org/10.1016/j.jeurceramsoc.2004.04.018
  18. T. Suehiro, N. Hirosaki and K. Komeya: Nanotechnology, 14 (2003) 487. https://doi.org/10.1088/0957-4484/14/5/301
  19. Y. Kameshima, M. Irie, A. Yasumori and K. Okada: Solid State Ionics, 172 (2004) 185. https://doi.org/10.1016/j.ssi.2004.05.015