• Title/Summary/Keyword: Ball Indentation Method

Search Result 18, Processing Time 0.023 seconds

Residual Stress Analysis of AISI 304 Surface Welding Plate by 3D Finite Element Method (3 차원 유한요소법을 이용한 AISI 304 표면용접평판의 잔류응력해석)

  • Lee, Kyoung-Soo;Kim, Tae-Ryong;Kim, Maan-Won;Park, Jai-Hak
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.390-395
    • /
    • 2008
  • This study is performed to understand three dimensional characteristics of weld residual stress for the surface weld on the stainless steel plate. AISI 304 plate with one path weld on the surface was used as a test specimen. Finite element analysis was done to analyze thermal transient and residual stress due to weld. The result of finite element analysis was validated by previous paper and measurement data. Among various techniques for residual stress measurement, instrumented ball indentation method was applied. The calculated residual stresses by finite element analysis showed good agreement with the measured results.

  • PDF

Quantitative Analysis of 3-D Displacements Measurement by Using Holospeckle Interferometry (홀로스펙클 간섭법을 이용한 3차원 변위측정의 정량적 연구)

  • 주진원;권영하;박승옥
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1208-1217
    • /
    • 1993
  • The simple and effective optical technique synthesizing holographic interferometry and speckle photography is presented. The optical system used in this experiment is based on image holography. A cantilever beam located on the precision translator is used to evaluate this measurement system. Experimental results agree well with the actual displacements within the error of 2.8%. As an its application, three dimensional contact deformation in the ball indentation is measured by using this optical system and compared with the numerical analysis by finite element method.

Fabrication of ZnS-SiO2 Composite and its Mechanical Properties (방전플라즈마 소결법을 이용한 ZnS-SiO2 복합재료의 제조와 기계적 특성)

  • Shin, Dae-Hoon;Kim, Gil-Su;Lee, Young-Jung;Cho, Hoon;Kim, Young-Do
    • Journal of Powder Materials
    • /
    • v.15 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • ZnS-$SiO_2$ composite is normally used for sputtering target. In recent years, high sputtering power for higher deposition rate often causes crack formation of the target. Therefore the target material is required that the sintered target material should have high crack resistance, excellent strength and a homogeneous microstructure with high sintered density. In this study, raw ZnS and ZnS-$SiO_2$ powders prepared by a 3-D mixer or high energy ball-milling were successfully densified by spark plasma sintering, the effective densification method of hard-to-sinter materials in a short time. After sintering, the fracture toughness was measured by the indentation fracture (IF) method. Due to the effect of crack deflection by the residual stress occurred by the second phase of fine $SiO_2$, the hardness and fracture toughness reached to 3.031 GPa and $1.014MPa{\cdot}m^{1/2}$, respectively.

Fabrication and characterization of graphite nanofiber reinforced aluminum matrix composites (탄소나노섬유 강화 알루미늄 복합재료의 제조 및 특성)

  • Jang J.H.;Oh K.H.;Han K.S.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.35-38
    • /
    • 2004
  • Graphite nanofiber (GNF) and carbon nanotube (CNT) are novel fiber reinforcing materials which have outstanding physical and mechanical properties. Aluminum matrix composites reinforced graphite nanofiber were fabricated by conventional powder metallurgy (PM) method. The composites were prepared through ultrasonication, ball milling, and hot isostatic pressing. A uniform distribution of GNF in aluminum matrix could be obtained. To measure the mechanical properties of GNF-Al composites testings were done in indentation and compression. The compressive strength was enhanced according to reinforcing graphite nanofiber while the hardness was decreased. This study makes the high performance composites for future applications.

  • PDF

EFFECT OF $CEO_2$ ADDITION IN GLASS COMPOSITION ON THE STRENGTH OF ALUMINA-GLASS COMPOSITES (알루미나-유리 복합체용 글래스의 조성에서 $CeO_2$의 함량변화가 강도에 미치는 영향)

  • Lee, Hwa-Jin;Song, Kwang-Yeob;Kang, Jeong-Kil
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.5
    • /
    • pp.595-605
    • /
    • 2000
  • Dental ceramics have good aesthetics, biocompatibility, low thermal conductivity, abrasion resistance, and color stability. However poor resistance to fracture and shrinkage during firing process have been limiting factors in their use, particularly in multiunit ceramic restorations. A new method for making all-ceramic crowns that have high strength and low processing shrinkage has been developed and is referred to as the Vita In-Ceram method. This study was performed to investigate the effect of $CeO_2$ addition in borosilicate glasses on the strength of alumina-glass composites. Porous alumina compacts were prepared by slip casting and sintered at $1,100^{\circ}C$ for 2 hours. Dense composites were made by infiltration of molten glass into partially sintered alumina at $1,140^{\circ}C$ for 4 hours. Specimens were polished sequentially from #800 to #2000 diamond disk. and the final surface finishing on the tensile side was received an additional polishing sequence through $1{\mu}m$ diamond paste. Biaxial flexure test was conducted by using ball-on-three-ball method at a crosshead speed of 0.5mm/min. To examine the microstructural aspect of crack propagation in the alumina-glass composites, Vickers-produced indentation crack was made on the tensile surface at a load of 98.0 N and dwell time of 15 sec, and the radial crack patterns were examined by an optical microscope and a scanning electron microscope. The results obtained were summarized as follows; 1. The porosity rates of partially sintered alumina decreased with the rising of firing temperature. 2. The maximum biaxial flexure strength of 423.5MPa in alumina-glass composites was obtained with an addition of 3 mol% $CeO_2$ in glass composition and strength values showed the aspect of decrease with the increase of $CeO_2$ content. 3 The biaxial flexure strength values of alumina-glass composites were decreased with rising the firing temperature. 4. Observation of the fracture surfaces of alumina-glass composites indicated that the enhancement of strength in alumina-glass composites was due to the frictional or geometrical inter-locking of rough fracture surfaces and ligamentary bridging by intact islands of materials left behind the fracture front.

  • PDF

Mechanical Properties and Microstructure of the Leucite-Reinforced Glass-Ceramics for Dental CAD/CAM

  • Byeon, Seon-Mi;Song, Jae-Joo
    • Journal of dental hygiene science
    • /
    • v.18 no.1
    • /
    • pp.42-49
    • /
    • 2018
  • The computer-aided design/computer-aided manufacturing (CAD/CAM) system was introduced to shorten the production time of all-ceramic restorations and the number of patient visits. Among these types of ceramic for dental CAD/CAM, they have been processed into inlay, onlay, and crown shapes using leucite-reinforced glass-ceramics to improve strength. The purpose of this study was to observe the mechanical properties and microstructure of leucite-reinforced glass-ceramics for dental CAD/CAM. Two types of leucite-reinforced glass-ceramic blocks (IPS Empress CAD, Rosetta BM) were prepared with diameter of 13 mm and thickness of 1 mm. Biaxial flexural testing was conducted using a piston-on-three-ball method at a crosshead speed of 0.5 mm/min. Weibull statistics were used for the analysis of biaxial flexural strength. Fracture toughness was obtained using an indentation fracture method. Specimens were observed by field emission scanning electron microscopy to examine the microstructure of the leucite crystalline phase after acid etching with 0.5% hydrofluoric acid aqueous solution for 1 minute. The results of strength testing showed that IPS Empress CAD had a mean value of $158.1{\pm}8.6MPa$ and Rosetta BM of $172.3{\pm}8.3MPa$. The fracture toughness results showed that IPS Empress CAD had a mean value of $1.28{\pm}0.19MPa{\cdot}m^{1/2}$ and Rosetta BM of $1.38{\pm}0.12MPa{\cdot}m^{1/2}$. The Rosetta BM sample exhibited higher strength and fracture toughness. Moreover, the crystalline phase size and ratio were increased in the Rosetta BM sample. The above results are expected to elucidate the basic mechanical properties and crystal structure characteristics of IPS Empress CAD and Rosetta BM. Additionally, they will help develop leucite-reinforced glass-ceramic materials for CAD/CAM.

Development of Extra High Voltage(400kN) Porcelain Insulator for Transmission Lines (765 kV용 400 kN 현수애자 개발)

  • 최인혁;최장현;이동일;최연규
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.8
    • /
    • pp.348-353
    • /
    • 2003
  • This paper was the research of high voltage suspension insulator (400 [kN]) including pottery stone, feldspar, clay and alumina of 17 [wt%]. The slurry was fabricated after ball milling mixed raw materials. Green compacts were made by the extrusion of jiggering method and were sintered at 1300[$^{\circ}C$] for 50 [min.] in the tunnel kiln. The sintered density was reached to 97% of theoretical density, and the bending strength was 1658 [k $g_{f}$/$\textrm{cm}^2$] and hardness and fracture toughness which was measured by ICL( indentation crack length ) method were 1658 (kgf/$\textrm{cm}^2$) and 27.5 [Gpa], respectively. In measurement of tana and insulation break voltage of 400 (kN) porcelain, tan$\delta$ took some numerical value between 17${\times}$10$_{-3}$ and 61${\times}$10$_{-3}$ and insulation break voltage value was 19.9$\pm$1.4 [㎸/mm]. The test was performed to research whether the shape of pin affect a overvoltage break load or not As a consequence, when a pin was designed a pin diameter 51 [mm] with the bottom form of two-step constructed with straight in the suspension insulator, Insulator showed overvoltage break load 52 [ton] of the highest value and reflected a fine characteristic in aged deterioration test which is one of the accelerated aging test. Also it could be confirmed a fine characteristic through performing the test that electrical property of insulator was established correctly in accordance with IEC 60383-1 standards.s.

Effect of Metal Interlayers on Nanocrystalline Diamond Coating over WC-Co Substrate (초경합금에 나노결정질 다이아몬드 코팅 시 금속 중간층의 효과)

  • Na, Bong-Kwon;Kang, Chan Hyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.2
    • /
    • pp.68-74
    • /
    • 2013
  • For the coating of diamond films on WC-Co tools, a buffer interlayer is needed because Co catalyzes diamond into graphite. W and Ti were chosen as candidate interlayer materials to prevent the diffusion of Co during diamond deposition. W or Ti interlayer of $1{\mu}m$ thickness was deposited on WC-Co substrate under Ar in a DC magnetron sputter. After seeding treatment of the interlayer-deposited specimens in an ultrasonic bath containing nanometer diamond powders, $2{\mu}m$ thick nanocrystalline diamond (NCD) films were deposited at $600^{\circ}C$ over the metal layers in a 2.45 GHz microwave plasma CVD system. The cross-sectional morphology of films was observed by FESEM. X-ray diffraction and visual Raman spectroscopy were used to confirm the NCD crystal structure. Micro hardness was measured by nano-indenter. The coefficient of friction (COF) was measured by tribology test using ball on disk method. After tribology test, wear tracks were examined by optical microscope and alpha step profiler. Rockwell C indentation test was performed to characterize the adhesion between films and substrate. Ti and W were found good interlayer materials to act as Co diffusion barriers and diamond nucleation layers. The COFs on NCD films with W or Ti interlayer were measured as less than 0.1 whereas that on bare WC-Co was 0.6~1.0. However, W interlayer exhibited better results than Ti in terms of the adhesion to WC-Co substrate and to NCD film. This result is believed to be due to smaller difference in the coefficients of thermal expansion of the related films in the case of W interlayer than Ti one. By varying the thickness of W interlayer as 1, 2, and $4{\mu}m$ with a fixed $2{\mu}m$ thick NCD film, no difference in COF and wear behavior but a significant change in adhesion was observed. It was shown that the thicker the interlayer, the stronger the adhesion. It is suggested that thicker W interlayer is more effective in relieving the residual stress of NCD film during cooling after deposition and results in stronger adhesion.