• Title/Summary/Keyword: Ball Bearing System

Search Result 164, Processing Time 0.027 seconds

Preparation of Al-Sn Coating Bearings by RF Sputtering Method and Evaluation of Their Properties (RF 스퍼터링법에 의한 Al-Sn계 코팅베어링의 제작과 특성 평가)

  • 이찬식;이명훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.139-146
    • /
    • 2000
  • The development of high performance materials is very important subject in order to enhance the properties of bearings whose role is to transfer energy harmoniously by reducing the problem of friction and wear down, etc. between the interacting solid surfaces in relative motion under high loads in comply with mechanical operating mechanism of engines. In this study, several (100-x)Al-xSn coating films (where x=85, 75, 65 atomic % at Al) on substrates which are abt. 2mm thickenss of Kelmet layer sintered back steel were prepared by using RF sputtering system. These coating films were observed the morphology by SEM(Scanning Electron Microscope) and investigated the crystal structure by XRD(X-ray Diffractor) for their properties. And friction coefficient of these films was measured by ball-on-disc tester for their tribological properties. From the experimental results, it was shown that high performance properties of bearing can be improved greatly by controlling the composition and morphology of material surface with effective use of the plasma-assisted sputtering process.

  • PDF

Investigations on critical speed suppressing by using electromagnetic actuators

  • Mahfoud, Jarir;Der Hagopian, Johan
    • Smart Structures and Systems
    • /
    • v.9 no.4
    • /
    • pp.303-311
    • /
    • 2012
  • The possibility of suppressing critical speeds by using electromagnetic actuators (EMAs) is assessed experimentally in this paper. The system studied is composed of a horizontal flexible shaft supported by two ball bearings at one end and one roller bearing that is located in a squirrel cage at the other end. Four identical EMAs supplied with constant current are utilized. The EMAs associated to the squirrel cage constitutes the hybrid bearing. Results obtained, show that the constant current, when applied to the EMAs, produces a shift of the first critical speed toward lower values. Moreover, the application of constant current for a speed interval around the critical speed enables a smooth run-up or run-down without crossing any resonance.

Geometric Error Analysis of Contact Type Three Points Supporting Method for Inner Diameter Measurement (접촉식 3점지지법에 의한 내경측정의 기하학적 오차 해석)

  • Kim, Min-Ho;Kim, Tae-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.5
    • /
    • pp.69-76
    • /
    • 2008
  • Inner diameter of bearing race is automatically measured by complete inspection system after grinding process. Contact type three points supporting method is widely applied to automatic inner diameter measurement because of its excellent stability. However, the geometric consideration regarding three points supporting method is not sufficient. In this study, the error equation from geometric error analysis of three points supporting method is found. The effect of factors in the error equation is also investigated. The error equation is linear for difference of diameter in sample and master on range of tolerance. An error becomes more and more larger, when the distance of two supporting balls or the diameter of supporting ball are increased. In the result, some considerations are proposed for measurement of inner diameter by the three points supporting method.

A Study on Balancing of High Speed Spindle using Influence Coefficient Method (영향계수법을 이용한 고속 스핀들의 밸런싱에 관한 연구)

  • Koo, Ja-Ham;Kim, In-Hwan;Hur, Nam-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.104-110
    • /
    • 2012
  • The spindle with a built-in motor can be used to simplify the structure of machine tool system, while the rotor has unbalance mass inevitably. A high-speed spindle can be very sensitive to rotating mass unbalance which has harmful effect on many machine tools. Therefore, the balancing procedure to reduce vibration in rotating system is certainly needed for all high-speed spindles. So, it was performed with a spindle-bearing system for CNC automatic lathe by using numerical procedure. The spindle is supported by the angular contact ball bearings and the motor rotor is fixed at the middle of spindle. The spindle-bearing system has been investigated using combined methodologies of finite elements and transfer matrices. The balancing was performed through influence coefficient method and the comparison was made by whirl responses between before balancing and after balancing. As a result, balancing of simple spindle model reduced whirl orbit magnitude in case of a completely assembled spindle model.

Seismic Performance Evaluation of Cone-type Friction Pendulum Bearing System Using Shaking Table Test (진동대실험을 통한 원추형 마찰진자베어링의 내진성능 평가)

  • Jeon, Bub-Gyu;Chang, Sung-Jin;Kim, Nam-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.389-394
    • /
    • 2011
  • Existing FPS(Friction Pendulum System) is isolation system which is possible to isolate structures by pendulum characteristic from ground vibration. Structural natural frequency could be decided by designing the radius of curvature of FPS. Thus, response vibration could be reduced by changing natural frequency of structures from FPS. But effective periods of recorded seismic wave were various and estimation of earthquake characteristic could be difficult. If effective periods of seismic wave correspond to natural frequency of structures with FPS, resonance can be occurred. Therefore, CFPBS(Cone-type Friction Pendulum Bearing System) was developed for controlling the response acceleration and displacement by the slope of friction surfaces. Structural natural frequency with CFPBS can be changed according to position of ball on the friction surface which was designed cone-type. Therefore, Divergence of response could be controlled by CFPBS which had constantly changing natural frequency with low modal participation factor in wide-range. In this study, Seismic performance of CFPBS was evaluated by numerical analysis and shaking table test.

  • PDF

Machining of Repetitive Micro Patterns using Oscillation Micro Milling (진동 마이크로 밀링을 이용한 미세 반복 패턴 가공 기술 연구)

  • Ro, Seung-Kook;Khim, Gyungho;Park, Jong-Kweon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.5
    • /
    • pp.381-387
    • /
    • 2014
  • This paper introduces a system to machine micro-sized patterns effectively on surface based on micro-milling process using tools with simultaneous rotation and oscillation, oscillation micro milling. To review the effectiveness of proposed concept, we integrated a micro-spindle supported by active magnetic bearings with a precision 3-axis air bearing stage using double-wedge mechanism, and tested this oscillation milling. Two types of oscillation milling were tested, which are linear oscillation milling with a flat end mill and elliptical oscillation milling with a ball end mill with 0.3 mm of diameter. The spindle was rotating 110 krpm and workpiece was moving constant speed of 2~8 mm/sec during the oscillation milling. As the results, multiple oval shape dimples were generated in regular spacing, and the variation of elliptical motion made different shapes of patterns. The results showed that proposed oscillation milling can be successfully used for machining repeated micro-patterns.

Seismic Performance Evaluation of Cone-type Friction Pendulum Bearing System Using Shaking Table Test (진동대실험을 통한 원추형 마찰진자베어링의 내진성능 평가)

  • Jeon, Bub-Gyu;Chang, Sung-Jin;Kim, Nam-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.7
    • /
    • pp.599-608
    • /
    • 2011
  • FPS(friction pendulum system) is an isolation system which is possible to isolate structures from earthquake by pendulum characteristic. Natural frequencies of the structures could be determined by designing the radius of curvature of FPS. Thus, response vibration could be reduced by changing natural frequency of structures from FPS. But effective periods of recorded seismic wave were various and estimation of earthquake characteristic could be difficult. If effective periods of seismic wave correspond to natural frequency of structures with FPS, resonance can be occurred. Therefore, CFPBS(cone-type friction pendulum bearing system) was developed for controlling the acceleration and displacement of structure by the slope of friction surfaces. Structural natural frequency with CFPBS can be changed according to position of ball on the friction surface which was designed cone-type. Therefore, superstructures on CFPBS could be isolated from earthquake. In this study, seismic performance of CFPBS was evaluated by numerical analysis and shaking table test.

Evaluation of Seismic Performance for Various Types of Pile Head of Landing Pier (잔교식 안벽에서 말뚝 두부형식에 따른 내진성능 평가)

  • Jang In-Sung;Kwon O-Soon;Park Woo-Sun;Jeong Weon-Mu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.2
    • /
    • pp.70-79
    • /
    • 2005
  • Most of landing piers in Korea employ the combination of vertical piles and batter piles, which shows good efficiency in static lateral resistance but poor seismic performance. Many attempts have continuously been made to increase the seismic performance of batter piles with various aseismatic systems. In this study, new types of aseismatic system were developed by use of rubber and ball bearing, and shaking table tests and 3 dim. numerical analyses were performed in order to compare the seismic performance for various types of pile head. The test and numerical analysis results show the high seismic performance of newly proposed systems and the applicability off dim. numerical analysis considering the non-linear behaviour of rubber and ball bearing systems.

A Study on Balancing of High-speed Spindle of CNC Automatic Lathe (CNC 자동선반 고속 스핀들의 밸런싱에 관한 연구)

  • Kim, Tae-Jong;Koo, Ja-Ham;Lee, Shi-Bok;Kim, Moon-Saeng
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.11
    • /
    • pp.1214-1221
    • /
    • 2009
  • A high-speed spindle can be very sensitive to rotating mass unbalance which has harmful effect on many machine tools. Therefore, the balancing procedure to reduce vibration in rotating system is certainly needed for all high-speed spindles. So, balancing procedure was performed with a spindle-bearing system for CNC automatic lathe by using numerical procedure. The spindle is supported by the angular contact ball bearings and the motor rotor is fixed at the middle of spindle. The spindle-bearing system has been investigated using combined methodologies of finite elements and transfer matrices. The balancing was performed through influence coefficient method and the comparison was made by whirl responses between before balancing and after balancing. As a result, balancing of simple spindle model reduced whirl orbit magnitude in case of a completely assembled spindle model.

Correlation Analysis Between Chemical Degradation Characteristics of Grease and Degradation Characteristics of Bearing Through Durability Test (내구시험을 통한 베어링의 열화 특성과 그리스의 화학적 열화 특성 연관성 분석)

  • Kang, Bo-Sik;Lee, Choong-Sung;Ryu, Kyung-Ha
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_3
    • /
    • pp.1239-1246
    • /
    • 2022
  • This paper introduces the effect of grease on the degradation characteristics of bearings used as key components of packaging equipment and automation systems. Bearings parts are installed to fix and support the rotating body of the system, and performance degradation of the bearings has a great effect on the life of the system too. When bearings are used in various devices and systems, the grease is applied to reduce friction and improve fatigue life. Determining the type of lubricant (grease) is important because it has a great influence on the operating environment and lifespan and ensures long lifespan of systems and facilities. However, studies that simultaneously compared and analyzed the change in mechanical degradation characteristics and the comparison of chemical degradation characteristics according to grease types under actual operating conditions are insufficient. In this paper, three types of small harmonic drive, high-load reducer, and low-load reducer grease used in power transmission joint modules are experimentally selected and finally injected into ball bearings with a load (19,500N) to improve bearing durability. Degradation characteristics were tested by attaching to test equipment. At this time, after the durability test under the same load conditions, the mechanical degradation characteristics, that is temperature, vibration according to the three greases types. In addition, the chemical degradation characteristics of the corresponding grease was compared to present the results of mutual correlation analysis.