• 제목/요약/키워드: Balancing Design

Search Result 421, Processing Time 0.03 seconds

Trade-Off Strategies in Designing Capacitor Voltage Balancing Schemes for Modular Multilevel Converter HVDC

  • Nam, Taesik;Kim, Heejin;Kim, Sangmin;Son, Gum Tae;Chung, Yong-Ho;Park, Jung-Wook;Kim, Chan-Ki;Hur, Kyeon
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.829-838
    • /
    • 2016
  • This paper focuses on the engineering trade-offs in designing capacitor voltage balancing schemes for modular multilevel converters (MMC) HVDC: regulation performance and switching loss. MMC is driven by the on/off switch operation of numerous submodules and the key design concern is balancing submodule capacitor voltages minimizing switching transition among submodules because it represents the voltage regulation performance and system loss. This paper first introduces the state-of-the-art MMC-HVDC submodule capacitor voltage balancing methods reported in the literatures and discusses the trade-offs in designing these methods for HVDC application. This paper further proposes a submodule capacitor balancing scheme exploiting a control signal to flexibly interchange between the on-state and the off-state submodules. The proposed scheme enables desired performance-based voltage regulation and avoids unnecessary switching transitions among submodules, consequently reducing the switching loss. The flexibility and controllability particularly fit in high-level MMC HVDC applications where the aforementioned design trade-offs become more crucial. Simulation studies for MMC HVDC are performed to demonstrate the validity and effectiveness of the proposed capacitor voltage balancing algorithm.

Experimental Study and Design of a Disturbance Observer for Steering Stabilization of a One-wheeled Balancing Robot (한 바퀴 밸런싱 로봇의 조향 안정화를 위한 외란관측기 설계 및 실험 연구)

  • Lee, Sang-Deok;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.5
    • /
    • pp.353-360
    • /
    • 2016
  • In this paper, a DOB (disturbance observer) is designed for the steering stabilization of one-wheeled balancing robot. Based on the simple stick model of the single-wheeled robot, DOBs and the corresponding Q filters are designed. Although the proposed models are simple, DOBs are desired to deal with model uncertainties for the enhanced balancing performance. Experimental studies of two different cases of Q filter design are conducted to evaluate the performances of DOBs. Their performances are compared through balancing control experiments.

SDRE Based Nonlinear Optimal Control of a Two-Wheeled Balancing Robot (SDRE 기법을 이용한 이륜 밸런싱 로봇의 비선형 최적제어)

  • Kim, Sang-Tae;Kwon, Sang-Joo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.10
    • /
    • pp.1037-1043
    • /
    • 2011
  • Two-wheeled balancing mobile robots are currently controlled in terms of linear control methods without considering the nonlinear dynamical characteristics. However, in the high maneuvering situations such as fast turn and abrupt start and stop, such neglected terms become dominant and greatly influence the overall driving performance. This paper addresses the SDRE nonlinear optimal control method to take advantage of the exact nonlinear dynamics of the balancing robot. Simulation results indicate that the SDRE control outperforms LQR in the respect of transient performance and required wheel torques. A design example is suggested for the state matrix that provides design flexibility in the SDRE control. It is shown that a well-planned state matrix by reflecting the physics of a balancing robot greatly contributes to the driving performance and stability.

The design and evaluation of automatic balancing equipment for the grinding machine (연삭기용 자동 밸런싱 장치의 설계 및 평가)

  • 장홍석;최대봉;황주호;홍준희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.309-314
    • /
    • 2001
  • The balance of high speed spindle system with high precision rotation like grinding machine is very important. Traditionally, we use trial and error method to balance the spindle. It takes much time. So we are developing the automatic balancing equipment being used in the grinding machine. The balancing head we develop is wireless. It will be used high-speed grinding machine. We use influence coefficient method to control the automatic balancer. Experiments are based on automatic and manual balancing. We perform test of the vibration filter. It helps to remove noise. The filter and experiments with automatic balancing controller show that automatic balancing control can be successfully achieved with the quick response and good stability characteristics.

  • PDF

A method of approximating spring characteristic and its application to the problem of balancing input torques (스프링특성의 근사법과 입력토오크 평형문제에의 응용)

  • 신재균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1026-1034
    • /
    • 1988
  • An efficient method for designing balancing springs to be used for dynamic balancing of planar mechanisms was studied. In spite of its wide application in the field of balancing problems such as balancing of input torques, clearance effects etc., there have been few efficient ways of determining the specifications of the balancing springs. To improve this problem, a method of approximating the characteristic of linear springs was suggested and its validity was checked through an analysis of errors. Further, through an example of a balancing problem to reduce the fluctuation of input torques of a 4bar mechanism, it was shown that the proposed method of approximation simplifies the design equations and a satisfactory result can be found efficiently.

Element Design of Balancing Shaft for Reducing the Vibration in Engine Module (엔진진동 저감을 위한 밸런싱샤프트의 요소설계 기법 연구)

  • Lee, Bong-Hyun;Kim, Dong-Chul;Jung, In-Oh;Kim, Chan-Jung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.11 s.104
    • /
    • pp.1268-1275
    • /
    • 2005
  • Vibration in Engine module could be reduced by introducing a balance shaft module which has one or more unbalanced rotors. Since the unbalanced rotor is installed in an opposite direction of the free force or unbalance moment by engine component, the unexpected vibration could be decreased kinematically. The essential equation of the unbalanced rotor was Presented for two cases, 3 in-line and 4 in-line cylinder engine type, And the efficiency of the balance shaft is investigated by the vehicle testing that is focused on measuring the reduced vibration level when adapting a balancing module. With the signal processing of measured signals, some important issues on design the balancing shaft could be derived and the overall design process is explained in the final part including the peripheral component, i.e. housing and bush.

Design of flexible assembly line for printed circuit board(PCB) manufacturing of amdahl company

  • Park, Kwangtae;Adiga, Sadashiv
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1992.04b
    • /
    • pp.159-168
    • /
    • 1992
  • 생산라인의 line balancing이 흐름생산에 있어서 일관된 생산을 하기 위한 필수조건이다. 여러 다양한 제품을 생산하는 printed circuit board(PCB) 공장에서의 line balancing을 얻기 위해서는 mixed model line balancing절차를 설명하고자 한다.

  • PDF

An Experimental Study on Balancing Stabilization of a Service Robot by Using Sliding Mechanism (슬라이딩 메커니즘을 이용한 서비스 로봇의 밸런싱 자세의 안정화에 대한 실험연구)

  • Lee, Seungjun;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.3
    • /
    • pp.233-239
    • /
    • 2013
  • This paper presents the analysis and control of the position of the COG (Center of Gravity) for a two-wheel balancing robot. The two-wheel balancing robot is required to maintain balance by driving two wheels only. Since the robot is not exactly symmetrical and its dynamics is changing with respect to moving parts, robust balancing control is difficult. Balancing performance becomes difficult when two arms hold a heavy object since the center of gravity is shifted out of the wheel axis. Novel design of a sliding waist mechanism allows the robot to react against the shift of the COG by moving the whole upper body to compensate for the imbalance of the mass as a counter balancer. To relocate the COG position accurately, the COG is analyzed by force data measured from two force sensors. Then the sliding COG mechanism is utilized to control the sliding waist position. Experimental studies are conducted to confirm the proposed design and method.

Croup Load Balancing Algorithm Using State Information Inference in Distributed System (분산시스템에서 상태 정보 추론을 이용한 그룹 부하 균등 알고리즘)

  • 정진섭;이재완
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.8
    • /
    • pp.1259-1268
    • /
    • 2002
  • One of the major goals suggested in distributed system is to improve the performance of the system through the load balancing of whole system. Load balancing among systems improves the rate of processor utilization and reduces the turnaround time of system. In this paper, we design the rule of decision-making and information interchange based on knowledge based mechanism which makes optimal load balancing by sharing the future load state information inferred from past and present information of each nodes. The result of performance evaluation shows that utilization of processors is balanced, the processing time is improved and reliability and availability of systems are enhanced. The proposed mechanism in this paper can be utilized in the design of load balancing algorithm in distributed operating systems.