• Title/Summary/Keyword: Balance shaft

Search Result 53, Processing Time 0.025 seconds

Behavioral Characteristics of Fatigue Cracks in Small Hole Defects Located on Opposite Sides of the Shaft Cross Section

  • Sam-Hong;Il-Hyuk;Jeong-Moo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.4
    • /
    • pp.36-42
    • /
    • 2004
  • The shaft with the circular cross section has symmetric structural combination parts to keep the rotating balance. Hence the crack usually initiates from symmetric combination parts due to the stress concentration of these parts. In this study to estimate the fatigue behavior of symmetric cracks, the fatigue test was performed by using a rotary bending tester and the specimen with symmetric defects in circular cross section. The characteristics of crack initiation and propagation on the symmetric surface cracks in circular cross section were examined. We also observed the internal crack using the oxidation coloring method and investigated the fatigue behavior using the relationship between the surface crack and the internal crack. As a result, the fatigue life of symmetric cracks was reduced by 35% compared to that of a single crack. We examined the characteristics of fatigue behavior of elements with symmetric cracks using internal crack propagation rate and maximum stress intensity factor range that were obtained from an approximation method.

The Experimental Study and Comparison on Usage of Vibration Monitoring Sensors for Positioning of Balancing on Rotating Machinery (진동 감시용 위치 결정 센서의 위상오차에 대한 실험적 고찰과 비교평가)

  • Oh, Seung-Tae;Yoo, Mu-Sang;Bong, Suk-Keun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.314-320
    • /
    • 2014
  • Field balancing is required in any kind of phase information for the determination location balancing mass toward a rotor unbalance mass. Phase or phase angle is a measurement of the relationship of how one vibration signal which relates to another vibration signal and is commonly used to calculate the placement of balance weight. In this paper, A right guideline shows the photo optical speed sensor as the external keyphasor is a very useful when diagnosing machinery vibration problems on considering a phase lag comparing to the laser optical speed sensor. Some experimental results generate the interesting phase errors when appling to a wrong conditions. So, Usage of photo optical speed sensor which is used primarily to measure the shaft rotating speed serves as a reference for measuring vibration phase information has effect on the placement of phase angle how it was misunderstood. This paper will help a right method to search for the position of balancing weight and serves as baseline for further measurements using low cost and much easier user convenience. It is concluded that the propose baseline is likely to be applicable to apply to the practical field balancing weight.

  • PDF

The Experimental Study and Comparison on Usage of Vibration Monitoring Sensors for Positioning of Balancing on Rotating Machinery (진동 감시용 위치 결정 센서의 위상오차에 대한 실험적 고찰과 비교 평가)

  • Oh, Seung-Tae;Yoo, Mu-Sang;Bong, Suk-Keun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.2
    • /
    • pp.101-107
    • /
    • 2015
  • Field balancing is required in any kind of phase information for the determination location balancing mass toward a rotor unbalance mass. Phase or phase angle is a measurement of the relationship of how one vibration signal which relates to another vibration signal and is commonly used to calculate the placement of balance weight. In this paper, A right guideline shows the photo optical speed sensor as the external KeyPhasor is a very useful when diagnosing machinery vibration problems on considering a phase lag comparing to the laser optical speed sensor. Some experimental results generate the interesting phase errors when appling to a wrong conditions. So, Usage of photo optical speed sensor which is used primarily to measure the shaft rotating speed serves as a reference for measuring vibration phase information has effect on the placement of phase angle how it was misunderstood. This paper will help a right method to search for the position of balancing weight and serves as baseline for further measurements using low cost and much easier user convenience. It is concluded that the propose baseline is likely to be applicable to apply to the practical field balancing weight.

A Novel Control Scheme for T-Type Three-Level SSG Converters Using Adaptive PR Controller with a Variable Frequency Resonant PLL

  • Lin, Zhenjun;Huang, Shenghua;Wan, Shanming
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1176-1189
    • /
    • 2016
  • In this paper, a novel quasi-direct power control (Q-DPC) scheme based on a resonant frequency adaptive proportional-resonant (PR) current controller with a variable frequency resonant phase locked loop (RPLL) is proposed, which can achieve a fast power response with a unity power factor. It can also adapt to variations of the generator frequency in T-type Three-level shaft synchronous generator (SSG) converters. The PR controller under the static α-β frame is designed to track ac signals and to avert the strong cross coupling under the rotating d-q frame. The fundamental frequency can be precisely acquired by a RPLL from the generator terminal voltage which is distorted by harmonics. Thus, the resonant frequency of the PR controller can be confirmed exactly with optimized performance. Based on an instantaneous power balance, the load power feed-forward is added to the power command to improve the anti-disturbance performance of the dc-link. Simulations based on MATLAB/Simulink and experimental results obtained from a 75kW prototype validate the correctness and effectiveness of the proposed control scheme.

A Study on Dynamic Characteristics of Gear-System (기어-시스템의 동특성에 대한 연구)

  • Lee, Hyoung-Woo;Park, No-Gill
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.11 s.176
    • /
    • pp.111-117
    • /
    • 2005
  • The vibration problems associated with gear coupled rotors have been the focus of much engineering work. These systems are complex and difficult to analyze in that they have the problems associated with conventional rotors plus those additional problems associated with the gear couplings. This paper examines the problems peculiar to the gear mesh. Because of the meshing action of gears, the elasticity of the gear teeth introduces time-varying stiffness coefficients into the governing equations of motion. This means that system response must be thought of in terms of Mathieu-type equations, where multiple-frequency response occur due to the periodic coefficients. The meshing action of the gears also couples the lateral and torsional gear motions. Gear errors, such as tooth profile and spacing errors, produce forces and torque that excite the system at multiple frequencies, some of which are much higher than shaft rotational speed. To investigate how to the time-varying stiffness in the gear teeth and the gear errors act one the dynamic response of the gear coupled rotors, a three-dimensional dynamic model with lateral-tortional oscillation is developed. The harmonic balance technique is employed to solve this mathieu-type problem.

A Study on Dynamic Characteristics of Reciprocating Compressors (왕복동 압축기의 동특성 분석 및 진동개선에 관한 연구)

  • 고병승;황원걸;안기원;박성우;서문희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.478-485
    • /
    • 2003
  • Today, although there have been high technical developments of a compressor in the respect of its capacity, it has been so hard to develop in the respect of vibration and noise because mechanical structure of it has originally numerous vibration and noise. However, if we can grasp the point of systematic phenomena of vibration and noise through the understanding of dynamic characteristics in mechanical equipment, it may be possible to consider countermeasures. In this study about a reciprocal compressor, the part of its machinery is modeled as rigid body, and the part of its spring is modeled as flexible body, and then they are analyzed by DADS. Each rigid body and spring are connected with joint torque of a motor is applied to shaft, and pressure is applied to a piston so that a compressor can be revolved. Based on this modeling, influence of a compressor's vibration is analyzed through changes of offset, connecting rod and crank radius In the case of weight balance, it I produced after re-design, and then changes of vibration of a compressor's inside are checked through experiments. These analysis data may help set measures of reducing vibration of a reciprocal compressor.

  • PDF

Numerical Analysis on the High Speed Precision Press for Ultra-thin Sheet Metal Forming (초박판 성형용 고속 정밀프레스에 대한 해석적 연구)

  • Kang, J.J.;Kim, J.E.;Hong, S.K.;Kim, J.D.;Heo, Y.M.;Cho, C.
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.643-648
    • /
    • 2008
  • Ultra-thin sheet metal forming techniques are required in precision forming of miniaturized and integrated products. In order to manufacture a good quality and low cost ultra-thin sheet metal products, a highly precise high-speed press is needed. The precision of a press is related with its vibration characteristics during pressing operation. This study evaluated the vibration characteristics of a proposed press design using computer simulation. The analysis compares the static deformation characteristics of the slide and the slide motion for the metal forming of an ultra-thin sheet of thickness less than 0.1mm. Further, in order to minimize the vibrations during high speed pressing operation, revolution balances of the eccentric shaft and the balance weight device is also considered. Finally, modal analysis is used to characterize the natural frequency of vibration of the press.

A Study on the Korean Bronze Pagoda (한국(韓國)의 청동탑(靑銅塔)에 관한 연구(硏究))

  • Cheon, Deuk-Youm;Jee, Seung-Long
    • Journal of architectural history
    • /
    • v.7 no.2 s.15
    • /
    • pp.29-48
    • /
    • 1998
  • The first Pagoda of Korea was introduced from China, and adapted from the wooden multi-storied pavilion. Also in Bronze one, multi-storied type of wooden pagoda was adapted. Bronze pagoda was used to buddhist ossuary and a kind of metalwork. Metalworks were made of gold, silver, copper, or iron by one of the methods of production-casting or hammering and decorated design of incision, raise, openwork, gold- plating or inlaying with gold and silver. Sometimes it was used as the easy carriage of Buddha image by guess. In most cases, the plan of Bronze pagoda was square and podium was one story. but in the advance of podium two-storied platform appeared. Column appeared in a symbol, so it didn't appear in a square and circular form. It means that the column was vertical member which only divided the wall. In koryo period, Gabled roof and Half-hipped roof was spreaded in public but Bronze pagoda was used to square Hipped roof. Vertical shaft over roof(上輪部), apart from body of pagoda(塔身部), was inserted on the hole above the Bokbal(覆鉢) for the balance of pagoda. And a thick iron bar put in the roof to the platform. It was sustained the balance of pagoda. The stories of pagoda were various from 3rd stories to 9, the lower stories was larger scale and the higher was smaller one.

  • PDF

Stability analysis of pump using finite element method (유한요소법에 의한 펌프축계의 안정성해석)

  • 양보석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.31-40
    • /
    • 1986
  • With the tendency toward high speed and high pressure in centrifugal pumps, the problem of sub-synchronous vibration has arisen, caused by the hydraulic forces of the working fluid, such as wearring, balance piston, impeller, etc.. These forces can drastically alter the rotor critical speeds and stability characteristics, and can be acted significant destabilizing forces. For preventing such self-excited vibration, the desing of the rotor system needs, which would secure the stability of the machine. In this paper, a procedure is presented for dynamic modeling of rotor-bearing-seal-impeller systems which consist of rigid disks, distributed parameter finite rotor elements and discrete bearings, seals and impellers. A finite element model including the effects of rotatory inertia and gyroscopic moments is developed using the consistent matrix approach. The technique of dynamic matrix reduction is applied to the shaft matrices to reduce them to a set of matrices of dynamic of significantly fewer degrees of freedom. The representation of bearing, seal and impeller elements is in term of linearized stiffness and damping matrices by reasonably small perturbations from equilibrium. The stability behavior of a typical double suction centrifugal pump is presented. Results show the influence of clearance and flow conditions on running speeds and stability characteristics.

  • PDF

A Study of Operation Performance Prediction Method for the Gasification Melting Furnace (가스화 용융로의 운전성능 예측기법에 관한 연구)

  • Lee, Min-Do;Choi, Sang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.43-49
    • /
    • 2005
  • Social interest and request about low pollution waste treatment process are growing and gasification melting method, as a new technology concept, is risen. The necessity of engineering analysis to determine design standards and operation condition is required. In this study, the objective and function of components and operation process of various gasification melting furnaces such as shaft type, fluidized bed and Rotary Kiln type gasification melting furnace are reviewed and the design standard and operation range of gasification melting furnace are determined by inspecting the change of output and operation condition with input condition change.

  • PDF