• Title/Summary/Keyword: Balance of Plant

Search Result 429, Processing Time 0.026 seconds

Static Characteristics of Electro-Hydraulic Spring Return Actuator (전기유압식 스프링복귀 액추에이터 정특성)

  • Jung, G.H.
    • Journal of Drive and Control
    • /
    • v.9 no.2
    • /
    • pp.8-14
    • /
    • 2012
  • Electro-hydraulic spring return actuator(ESRA) is utilized for air conditioning facilities in a nuclear power plant. It features self-contained, hydraulic power that is integrally coupled to a single acting hydraulic cylinder and provides efficient and precise linear control of valves as well as return of the actuator to the de-energized position upon loss of power. In this paper, the algebraic equations of ESRA at steady-state have been developed for the analysis of static characteristics that includes control pressure and valve displacement of pressure reducing valve, flow force on flapper as well as its displacement over the entire operating range. Also, the effect of external load on piston deviation is investigated in terms of linear system analysis. The results of static characteristics show the unique feature of force balance mechanism and can be applied to the stable self-controlled mechanical system design of ESAR.

Application of ecological interface design in nuclear power plant (NPP) operator support system

  • Anokhin, Alexey;Ivkin, Alexey;Dorokhovich, Sergey
    • Nuclear Engineering and Technology
    • /
    • v.50 no.4
    • /
    • pp.619-626
    • /
    • 2018
  • Most publications confirm that an ecological interface is a very efficient tool to supporting operators in recognition of complex and unusual situations and in decision-making. The present article describes the experience of implementation of an ecological interface concept for visualization of material balance in a drum separator of RBMK-type NPPs. Functional analysis of the domain area was carried out and revealed main factors and contributors to the balance. The proposed ecological display was designed to facilitate execution of the most complicated cognitive operations, such as comparison, summarizing, prediction, etc. The experimental series carried out at NPPs demonstrated considerable reduction of operators' mental load, time of reaction, and error rate.

A Study on Design Characteristics of Yeosu Circulating Fluidized Bed Boiler (여수화력 순환유동상 보일러의 설계특성 고찰)

  • Kim, Jae-Sung;Lee, Jong-Min;Kim, Dong-Won;Kim, Tae-Hyun;Choi, Sang-Min
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • 340 MWe circulating fluidized bed (CFB) boiler in Yeosu power station is under construction. The circulating fluidized bed boiler in the Yeosu power plant has a number of differences from other domestic boilers in terms of scale and design. Evaluation of design parameters of the Yeosu CFB boiler should be required because the direct application of existing technology is limited. In this study, design characteristics of the Yeosu CFB boiler was summarized. And thermogravimetric analysis was conducted with comparing other rank coals. Watersteam side heat absorption, flue gas temperature and heat transfer coefficient were calculated by heat and mass balance. Design parameters for the Yeosu CFB boiler were discussed along with typical value in the CFB design range.

A Study on the Optimum Operational Control of Power System (전렬계통의 합리적 운용제어에 관한 연구)

  • 정재길;박영문
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.33 no.10
    • /
    • pp.410-422
    • /
    • 1984
  • This paper presents a new practical method for optimal active and reactive power control for the economic operation in electrical power system, and the programs are developed for digital computer solution. The major features and techniques of this paper are as follows: 1) The method is presented for finding the equivalent active power balance equation applying the sparse Jacobian matrix of power flow equation instead of using B constant as active power balance equation considering transmission loss, and thus for determining directly optimal active power allocation berween generator unitw satisfying the equality and inequality constraints. 2) The method is proposed for solving directly the optimum economim dispatch problem without using gradient method and penalty function for both active and reactive power control. As a result, the computing time are reduced and convergence characteristic is remarkably improved. 3) Unlike most of conventional methods which adopt the transmission loss as a objective function for reactive power control, the total fuel cost of themal power plant is adopted as objective function for both active and reactive power control. consequently, more reasonable and economic profit can be achieved.

Root Cause Analysis on the Steam Turbine Blade Damage of the Combined Cycle Power Plant (복합화력발전소 증기터빈 동익 손상 원인분석)

  • Kang, M.S.;Kim, K.Y.;Yun, W.N.;Lee, W.K.
    • Journal of Power System Engineering
    • /
    • v.12 no.4
    • /
    • pp.57-63
    • /
    • 2008
  • The last stage blade of the low pressure steam turbine remarkably affects turbine plant performance and availability Turbine manufacturers are continuously developing the low pressure last stage blades using the latest technology in order to achieve higher reliability and improved efficiency. They tend to lengthen the last stage blade and apply shrouds at the blades to enhance turbine efficiency. The long blades increase the blade tip circumferential speed and water droplet erosion at shroud is anticipated. Parts of integral shrouds of the last stage 40 inch blades were cracked and liberated recently in a combined cycle power plant. In order to analyze the root cause of the last stage blades shroud cracks, we investigated operational history, heat balance diagram, damaged blades shape, fractured surface of damaged blades, microstructure examination and design data, etc. Root causes were analyzed as the improper material and design of the blade. Notches induced by erosion and blade shroud were failed eventually by high cycle fatigue. This paper describes the root cause analysis and countermeasures for the steam turbine last stage blade shroud cracks of the combined cycle power plant.

  • PDF

Modeling and Parameter Identification of Coal Mill

  • Shin, Hwi-Beom;Li, Xin-Lan;Jeong, In-Young;Park, Jong-Man;Lee, Soon-Young
    • Journal of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.700-707
    • /
    • 2009
  • The coal mill used in the coal-fired power plants is modeled in view of the controller design rather than the educational simulator. The coal mass flow and the outlet temperature are modeled by reinvestigating the mass balance and heat balance models physically. The archived data from a plant database are utilized to identify the model parameters. It can be seen that the simulated model outputs are well matched with the measured ones. It is also expected that the proposed model is useful for the controller design.

A State Space Analysis on the Stability of Periodic Orbit Predicted by Harmonic Balance

  • Sung, Sang-Kyung;Lee, Jang-Gyu;Kang, Tae-Sam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.67.5-67
    • /
    • 2001
  • A closed loop system with a linear plant and nonlinearity in the feedback connection is analyzed for its quasi-static orbital stability by a state-space approach. First a periodic orbit is assumed to exist in the loop which is determined by describing function method for the given nonlinearity. This is possible by selecting a proper nonlinearity and a rigorous justification of the describing function method.[1-3, 18, 20]. Then by introducing residual operator, a linear perturbed model can be formulated. Using various transformations like a modified eigenstructure decomposition, periodic-averaging, charge of variables and coordinate transformation, the stability of the periodic orbit, as a solution of harmonic balance, can be shown by investigating a simple scalar function and result of linear algebra. This is ...

  • PDF

A Study on the Ballast Control System for Offshore Plant (Offshore Plant용 발라스트 제어 시스템에 관한 연구)

  • Oh, Jin Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.12
    • /
    • pp.2944-2951
    • /
    • 2013
  • Recently, the offshore plant has been revived by rise in oil prices and energy consumption. Due to the external environmental impact, the ballast system is essential for an offshore plant. The ballast system for the existing offshore plant, consist of pump 6EA and Ballast tank 4EA, is performed by the tilt control. However, this system is vulnerable to a failure due to the fact that a lot of equipment needs to be installed within the system. In this paper, a new concept of ballast system and the control algorithm based on IT is proposed. Simulator has been created to test the proposed system and algorithm, and as a result, it has proven that it is controlled stably.

Study on Conceptual Design Support System for Liquid Metal Reactor

  • Lee, Kwang-Gu;Chang, Soon-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.289-294
    • /
    • 1996
  • Feasibility study on conceptual design tool for liquid metal reactor has been conducted to optimize the thermohydraulic and neutronic design parameters. To accomplish this task the neutronic code PRISM, fuel performance code and scaling method have been included into the conceptual design support system. ALMR(PRISM 303MWe) has been adopted as the reference plant and principally according to the power level, conceptual design parameters are optimized so that energy balance and neutronics balance seem to be satisfied. This paper presents only the results of optimization on primary system including the IHX system.

  • PDF

A Study for Controller Design Using 2-Degree of Freedom(DOF) Structure In A Magnetically Suspended System (자기부상시스템의 2-DOF 구조를 이용한 제어기 설계에 관한 연구)

  • Baek, Seung-Koo;Lee, Chang-Young;Chang, Seok-Gahk;Kwon, Sung-Tae
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1430-1435
    • /
    • 2006
  • This study deals with the problem of balance beam system to stabilize about static and sinusoidal disturbance. wherein the design objectives are to keep the gap deviation from static and sinusoidal disturbance. In this paper propose the 2-Degree of Freedom(DOF) structure and a simple first-order controller which is designed by Characteristic ratio assignment (CRA) method. Matlab simulation result verify stabilization of balance beam system despite of disturbance. Hybrid simulation between digital controller and analog plant is presented by Matlab Simulink.

  • PDF