• Title/Summary/Keyword: Balance adsorption

Search Result 34, Processing Time 0.021 seconds

Effect Analysis of Reservoir Water Quality Improvement with Floating Islands (인공식물섬의 호소 수질개선 효과분석(지역환경 \circled2))

  • 박병흔;권순국;윤경섭
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.550-556
    • /
    • 2000
  • Three floating islands were constructed on the surface of the reservoir, each consisting of 10 16-㎡ (4${\times}$4 m) segments, made of wood frames and floats. Three species of aquatic macrophytes were planted in each island on June, 1998. Phragmites australis was considered as the suitable aquatic macrophyte for the floating islands since it maintained the most efficient root and shoot balance among the macrophytes. The net primary productivity of P. Australis was 3,604 g/㎡ based on dry weight in 1999, with uptake rates of nitrogen and phosphorus estimated at 77.4 g/㎡/yr and 5.7 g/㎡/yr, respectively. The result of water quality simulation for the floating islands showed that, through adsorption of nutrients and light screening, they could reduce the amount of phytoplankton, thereby decreasing COD concentration.

  • PDF

Prediction of Propylene/Propane Separation Behavior of Na-type Faujasite Zeolite Membrane by Using Gravimetric Adsorption (중량식흡착 거동에 기초한 Na형 Faujasite 제올라이트 분리막의 프로필렌/프로페인 분리 거동 예측 연구)

  • Hwang, Juyeon;Min, Hae-Hyun;Park, You-In;Chang, Jong-San;Park, Yong-Ki;Cho, Churl-Hee;Han, Moon-Hee
    • Membrane Journal
    • /
    • v.28 no.6
    • /
    • pp.432-443
    • /
    • 2018
  • In this study, propylene/propane separation behavior of Na-type faujasite zeolite membranes is predicted by observing gravimetric adsorptions of propylene and propane on zeolite 13X. The gravimetric adsorptions were measured by using a magnetic suspension balance (MSB) at temperatures of 323, 343, 363 K and a pressure range of 0.02-1 bar. The pressure was increased at 0.1 bar intervals. As adsorption temperature increased, adsorptions of propylene and propane decreased and propylene/propane adsorption selectivity increased. Also, the diffusion coefficients of propylene and propane were increased as the adsorption temperature increased, following the Arrhenius equation. The maximum propylene/propane diffusion selectivity was 0.9753 at 323 K. The perm-selectivity was calculated from the adsorption data of zeolite 13X and compared with the perm-selectivity measured in the single gas permeation experiment for the Na-type faujasite zeolite membrane. The maximum values for the calculated and measured perm-selectivities were observed at a temperature of 323 K. It could be concluded that the prediction of propylene/propane separation of surface diffusion-based membrane by using gravimetric adsorption data is reasonable. Therefore, it is expected that this prediction method can be applied to the screening of adsorption-based microporous membrane for propylene/propane separation.

Characterizing a Full Spectrum of Physico-Chemical Properties of Ginsenosides Rb1 and Rg1 to Be Proposed as Standard Reference Materials

  • Kim, Il-Woung;Hong, Hee-Do;Choi, Sang-Yoon;Hwang, Da-Hye;Her, Youl;Kim, Si-Kwan
    • Journal of Ginseng Research
    • /
    • v.35 no.4
    • /
    • pp.487-496
    • /
    • 2011
  • Good manufacturing practice (GMP)-based quality control is an integral component of the common technical document, a formal documentation process for applying a marketing authorization holder to those countries where ginseng is classified as a medicine. In addition, authentication of the physico-chemical properties of ginsenoside reference materials, and qualitative and quantitative batch analytical data based on validated analytical procedures are prerequisites for certifying GMP. Therefore, the aim of this study was to propose an authentication process for isolated ginsenosides $Rb_1$ and $Rg_1$ as reference materials (RM) and for these compounds to be designated as RMs for ginseng preparations throughout the world. Ginsenoside $Rb_1$ and $Rg_1$ were isolated by Diaion HP-20 adsorption chromatography, silica gel flash chromatography, recrystallization, and preparative HPLC. HPLC fractions corresponding to those two ginsenosides were recrystallized in appropriate solvents for the analysis of physico-chemical properties. Documentation of the isolated ginsenosides was made according to the method proposed by Gaedcke and Steinhoff. The ginsenosides were subjected to analyses of their general characteristics, identification, purity, content quantitation, and mass balance tests. The isolated ginsenosides were proven to be a single compound when analyzed by three different HPLC systems. Also, the water content was found to be 0.940% for $Rb_1$ and 0.485% for $Rg_1$, meaning that the net mass balance for ginsenoside $Rb_1$ and $Rg_1$ were 99.060% and 99.515%, respectively. From these results, we could assess and propose a full spectrum of physicochemical properties for the ginsenosides $Rb_1$ and $Rg_1$ as standard reference materials for GMP-based quality control.

Water treatment sludge for removal of heavy metals from electroplating wastewater

  • Ghorpade, Anujkumar;Ahammed, M. Mansoor
    • Environmental Engineering Research
    • /
    • v.23 no.1
    • /
    • pp.92-98
    • /
    • 2018
  • Suitability of aluminium-based water treatment sludge (WTS), a waste product from water treatment facilities, was assessed for removal of heavy metals from an electroplating wastewater which had high concentrations of copper and chromium along with other heavy metals. Batch tests with simulated wastewater in single- and multi-metal solutions indicated the influence of initial pH and WTS dose on removal of six metals namely Cu(II), Co(II), Cr(VI), Hg(II), Pb(II) and Zn(II). In general, removal of cationic metals such as Pb(II), Cu(II) and Zn(II) increased with increase in pH while that of anionic Cr(VI) showed a reduction with increased pH values. Tests with multi-metal solution showed that the influence of competition was more pronounced at lower WTS dosages. Column test with diluted (100 times) real electroplating wastewater showed complete removal of copper up to 100 bed volumes while chromium removal ranged between 78-92%. Other metals which were present in lower concentrations were also effectively removed. Mass balance for copper and chromium showed that the WTS media had Cu(II) and Cr(VI) sorption capacities of about 1.7 and 3.5 mg/g of dried sludge, respectively. The study thus indicates that WTS has the potential to be used as a filtration/adsorption medium for removal of metals from metal-bearing wastewaters.

Design of Residual Treatment Process with Filter Backwash Recycle System (역세척수 회수시스템이 포함된 배출수처리공정의 설계)

  • Bae, Byung-Uk;Choi, Kyung-Hwan
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.109-114
    • /
    • 2012
  • In this study, both sedimentation and thickening experiments were conducted for residuals produced from an advanced water treatment plant for more accurate and practical design of residual treatment train. In order to design a backwashed residual sedimentation basin (SRSB) in the filter backwash water recycle system, two kinds of backwash waters, one from sand filter (SFBW) and the other from GAC adsorption bed (GACBW), were separately collected and their surface loading rate measured. In addition, in order to design a gravity thickener, batch thickening tests were conducted for concentrated residuals taken from sedimentation basin and their limiting solid flux ($SF_{L}$) measured. From the experimental results and consideration of the seasonal characteristics of the residual, surface loading rate of $70m^{3}/m^{2}{\cdot}d$ was proposed as a design parameter for SRSB and solid loading rate of 20 kg $TS/m^{2}{\cdot}d$ was proposed as a design parameter for gravity thickeners. Finally, the material mass-balance was made for the design of each unit process in the residual treatment train.

Development of a Mathematical Model for Simulating Removal Mechanisms of Heavy Metals using Biocarrier Beads (미생물 담체를 이용한 납 제거기작 모의를 위한 수학적 모델의 개발)

  • Seo, Hanna;Lee, Minhee;Wang, Sookyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.4
    • /
    • pp.8-18
    • /
    • 2013
  • Biocarrier beads with dead biomass, Bacillus drentensis, immobilized in polymer polysulfone were synthesized to remove heavy metals from wastewater. To identify the sorption mechanisms and theoretical nature of underlying processes, a series of batch experiments were carried out and a mathematical model was developed to quantify the biosorption of Pb(II) by the biocarrier beads. A series of mass balance equations for representing mass transfer of metal sorbents in biocarrier beads and surrounding solution were established. Major model parameters such as external mass transfer coefficient and maximum sorption capacity, etc. were determined from pseudo-first-order kinetic models and Langmuir isotherm model based on kinetic and equilibrium experimental measurements. The model simulation displays reasonable representations of experimental data and implied that the proposed model can be applied to quantitative analysis on biosorption mechanisms by porous granular beads. The simulation results also confirms that the biosorption of heavy metal by the biocarrier beads largely depended on surface adsorption.

Electrospun Polyacrylonitrile-Based Carbon Nanofibers and Their Hydrogen Storages

  • Kim Dong-Kyu;Park Sun Ho;Kim Byung Chul;Chin Byung Doo;Jo Seong Mu;Kim Dong Young
    • Macromolecular Research
    • /
    • v.13 no.6
    • /
    • pp.521-528
    • /
    • 2005
  • Electrospun polyacrylonitrile (PAN) nanofibers were carbonized with or without iron (III) acetylacetonate to induce catalytic graphitization within the range of 900-1,500$^{circ}C$, resulting in ultrafine carbon fibers with a diameter of about 90-300 nm. Their structural properties and morphologies were investigated. The carbon nanofibers (CNF) prepared without a catalyst showed amorphous structures and very low surface areas of 22-31 $m^{2}$/g. The carbonization in the presence of the catalyst produced graphite nanofibers (GNF). The hydrogen storage capacities of these CNF and GNF materials were evaluated through the gravimetric method using magnetic suspension balance (MSB) at room temperature and 100 bar. The CNFs showed hydrogen storage capacities which increased in the range of 0.16-0.50 wt$\%$ with increasing carbonization temperature. The hydrogen storage capacities of the GNFs with low surface areas of 60-253 $m^{2}$/g were 0.14-1.01 wt$\%$. Micropore and mesopore, as calculated using the nitrogen gas adsorption-desorption isotherms, were not the effective pore for hydrogen storage.

A Study on the Removal of Heavy Metals Using Functional Group on the Surface of Discarded Automotive Tires (폐타이어 표면에 형성되는 Functional Group을 이용한 중금속 제거에 관한 연구)

  • Lee, Yong-Doo;Ko, Deuk-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.3
    • /
    • pp.357-364
    • /
    • 2007
  • This research is to set a direction on the recycle of Discarded Automotive tires reforming them into heavy metal adsorbents by developing a particular functional group inducing formation of Chelate complexes with heavy metal ion in the water, on the surface of the used tire conventionally turned into powdered form. For this purpose, through FT-IR, XRD, XRF, SEM, elution test we confirmed and analyzed the property of newly reformed scrapped tires, and functional group. Also, by Kinetics Study we produced an invariable value applying to absorption models. Conclusively the absorption preference of heavy metal is determined to be $Pb^{2+}>Cu^{2+}>Cd^{2+}$, and it reached absorption balance within first 30 minutes, also the absorption reaction time increased from 0.27 to $1.78\sim3.15(g/mg{\cdot}min)$, and showed more than 80% of removal efficiency. This result proved that the efficiency increased by 10 times compared with the conventional powdered Discarded Automotive tires, and the Discarded Automotive tire which implemented the Functional group can exhibit a great efficiency as heavy metal adsorbent.

Selective Catalytic Oxidation of Ammonia in the Presence of Manganese Catalysts (망간촉매하에서 암모니아의 선택적 산화반응)

  • Jang, Hyun Tae;Park, YoonKook;Ko, Yong Sig;Cha, Wang Seog
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.498-505
    • /
    • 2008
  • The selective catalytic oxidation of ammonia was carried out in the presence of natural manganese ore (NMO) and manganese as catalysts using a homemade 1/4" reactor at $10,000hr^{-1}$ of space velocity. The inlet ammonia concentration was maintained at 2,000 ppm, with an air balance. The manganese catalyst resulted in a substantial ammonia conversion, with adsorption activation energies of oxygen and ammonia of 10.5 and 22.7 kcal/mol, respectively. Both $T_{50}$ and $T_{90}$, defined as the temperatures where 50% and 90% of ammonia, respectively, are converted, decreased significantly when alumina-supported manganese catalyst was applied. Increasing the manganese weight percent by 15 wt% increased the lower temperature activity, but 20 wt% of manganese had an adverse effect on the reaction results. An important finding of the study was that the manganese catalyst benefits from a strong sulfur tolerance in the conversion of ammonia to nitrogen.

A Basic Design of Multi Energy Hub Based on Natural Gas Governor Station (가스정압관리소 기반의 복합에너지허브 기본설계)

  • PARK, SOJIN;KIM, HYOUNGTAE;KIM, JINWOOK;KANG, IL-OH;YOO, HYUNSUK;CHOI, KYOUNGSHIK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.5
    • /
    • pp.405-410
    • /
    • 2020
  • In this literature, we are introduce a basic design of multi energy hub based on natural gas governor station. Multi energy hub consists of turbo expender generator, phosphoric acid fuel cell, pressure swing adsorption, H2 charging station, utilities and etc. We design a hybrid energy hub system that provides energy using these complex energies, and calculates the amount of electricity that can be produced and the amount of hydrogen charged through the process analysis. TEG and phosphoric acid fuel cell produce 2,290 to 2,380 kW and can supply electricity to 500 houses. In addition, By-product H2 gas is refined to H2 vehicle fuel. This will help maximize the balance of energy demand and supply and improve national energy efficiency by integrating unused decompression energy power generation technology and various power generation/heat source technologies.