Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.6.432

Prediction of Propylene/Propane Separation Behavior of Na-type Faujasite Zeolite Membrane by Using Gravimetric Adsorption  

Hwang, Juyeon (Department of Energy Science and Technology, Graduate School of Energy Science and Technology (GEST), Chungnam National University)
Min, Hae-Hyun (Department of Energy Science and Technology, Graduate School of Energy Science and Technology (GEST), Chungnam National University)
Park, You-In (Center for Convergent Chemical Process, National Research Council of Science & Technology)
Chang, Jong-San (Center for Convergent Chemical Process, National Research Council of Science & Technology)
Park, Yong-Ki (Center for Convergent Chemical Process, National Research Council of Science & Technology)
Cho, Churl-Hee (Department of Energy Science and Technology, Graduate School of Energy Science and Technology (GEST), Chungnam National University)
Han, Moon-Hee (Department of Energy Science and Technology, Graduate School of Energy Science and Technology (GEST), Chungnam National University)
Publication Information
Membrane Journal / v.28, no.6, 2018 , pp. 432-443 More about this Journal
Abstract
In this study, propylene/propane separation behavior of Na-type faujasite zeolite membranes is predicted by observing gravimetric adsorptions of propylene and propane on zeolite 13X. The gravimetric adsorptions were measured by using a magnetic suspension balance (MSB) at temperatures of 323, 343, 363 K and a pressure range of 0.02-1 bar. The pressure was increased at 0.1 bar intervals. As adsorption temperature increased, adsorptions of propylene and propane decreased and propylene/propane adsorption selectivity increased. Also, the diffusion coefficients of propylene and propane were increased as the adsorption temperature increased, following the Arrhenius equation. The maximum propylene/propane diffusion selectivity was 0.9753 at 323 K. The perm-selectivity was calculated from the adsorption data of zeolite 13X and compared with the perm-selectivity measured in the single gas permeation experiment for the Na-type faujasite zeolite membrane. The maximum values for the calculated and measured perm-selectivities were observed at a temperature of 323 K. It could be concluded that the prediction of propylene/propane separation of surface diffusion-based membrane by using gravimetric adsorption data is reasonable. Therefore, it is expected that this prediction method can be applied to the screening of adsorption-based microporous membrane for propylene/propane separation.
Keywords
gravimetric adsorption; zeolite 13X; propylene/propane separation; perm-selectivity; diffusivity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Public investment bank berhad, "Important disclaimer is provided at the end of this report", 1, 8, Public investment bank berhad research team, Malaysia (2017).
2 R. B. Eldridge, "Olefin/paraffin separation technology: A review", Ind. Eng. Chem. Res., 32, 2208 (1993).   DOI
3 P. Angelini, "Materials for separation technologies: Energy and emission reduction opportunities", Energy Efficiency & Renewable Energy, Department of Energy, USA (2005).
4 C. A. Grande and A. E. Rodrigues, "Propane/propylene separation by Pressure Swing Adsorption using zeolite 4A", Ind. Eng. Chem. Res., 44, 8815 (2005).   DOI
5 N. Kosinov, J. Gascon, F. Kapteijn, and E. J. M. Hensen, "Recent developments in zeolite membranes for gas separation", J. Membr. Sci., 499, 65 (2016).   DOI
6 R. Zarca, A. Ortiz, D. Gorri, L. T. Biegler, and I. Ortiz, "Optimized distillation coupled with state-of-the-art membranes for propylene purification", J. Membr. Sci., 556, 321 (2018).   DOI
7 H. J. Shin, S. H. Choi, J. H. Kim, I. J. Park, and S. B. Lee, "Permeation behavior of olefin/N itrogen through siloxane based polymeric membranes", Membr. J., 13, 246 (2003).
8 M. Das and W. J. Koros, "Performance of 6FDA-6FpDA polyimide for propylene/propane separations", J. Membr. Sci., 365, 399 (2010).   DOI
9 C. Staudt-Bickel and W. J. Koros, "Olefin/paraffin gas separations with 6FDA-based polyimide membranes", J. Membr. Sci., 170, 205 (2000).   DOI
10 C. H. Cho, J. G. Yeo, Y. S. Ahn, M. H. Han, J. H. Moon, and C. H. Lee, "A simultaneous improvement in $CO_2$ flux and $CO_2$/$N_2$ separation factor of sodium- type FAU zeolite membranes through 13X zeolite beads embedding", Membr. J., 17, 269 (2007).
11 C. H. Cho, J. G. Yeo, Y. S. Ahn, M. H. Han, Y. H. Kim, and S. H. Hyun, "Secondary growth of sodium type faujasite zeolite layers on a porous ${\alpha}$- $Al_2O_3$ tube and the $CO_2$/$N_2$ separation", Membr. J., 17, 254 (2007).
12 B. H. Jeong, Y. Hasegawa, K. I. Sotowa, K. Kusakabe, and S. Morooka, "Permeation of binary mixtures of benzene and saturated C4-C7 hydrocarbons through an FAU-type zeolite membrane", J. Membr. Sci., 213, 115 (2003).   DOI
13 H. Kita, K. Fuchida, T. Horita, H. Asamura, and K. Okamoto, "Preparation of faujasite membranes and their permeation properties", Sep. Purif. Technol., 25, 261 (2001).   DOI
14 I. G. Giannakopoulos and V. Nikolakis, "Separation of propylene/propane mixtures using faujasite-type zeolite membranes", Ind. Eng. Chem. Res., 44, 226 (2005).   DOI
15 Y. Hasegawa, T. Tanaka, K. Watanabe, B. H. Jeong, K. Kusakabe, and S. Morooka, "Separation of $CO_2$-$CH_4$ and $CO_2$-$N_2$ systems using ion-exchanged FAU-type zeolite membranes with different Si/Al ratios", Korean J. Chem. Eng., 19, 309 (2002).   DOI
16 S. Li, V. A. Tuan, J. L. Falconer, and R. D. Noble, "X-type zeolite membranes: Preparation, characterization, and pervaporation performance", Microporous Mesoporous Mater, 53, 59 (2002).   DOI
17 V. Nikolakis, G. Xomeritakis, A. Abibi, M. Dickson, M. Tsapatsis, and D. G. Vlachos, "Growth of a faujasite-type zeolite membrane and its application in the separation of saturated/unsaturated hydrocarbon mixtures", J. Membr. Sci., 184, 209 (2009).
18 M. Kanezashi, M. Kawano, T. Yoshioka, and T. Tsuru, "Organic-inorganic hybrid silica membranes with controlled silica network size for propylene/ propane separation", Ind. Eng. Chem. Res., 51, 944 (2012).   DOI
19 S. Divekar, A. Nanoti, S. Dasgupta, Aarti, R. Chauhan, P. Gupta, M. O. Garg, S. P. Singh, and I. M. Mishra, "Adsorption equilibria of propylene and propane on zeolites and prediction of their binary adsorption with the ideal adsorbed solution theory", J. Chem. Eng. Data., 61, 2629 (2016).   DOI
20 F. A. Da Silva and A. E. Rodrigues, "Adsorption equilibria and kinetics for propylene and propane over 13X and 4A zeolite pellets", Ind. Eng. Chem. Res., 38, 2051 (1999).   DOI
21 J. Kager, "Measurement of diffusion in zeolites: A never ending challenge?", Adsorption, 9, 29 (2003).   DOI
22 S. Palmas, A. M. Polcaro, R. Carta, and G. Tola, "Sorption and Diffusion of Light Hydrocarbons on Na-Y Zeolites", J. Chem. Eng. Data., 36, 1 (1991).   DOI
23 A. Germanus, J. Kager, and H. Pfeifer, "Self-diffusion of paraffins and olefins in zeolite Na-X under the influence of residual water molecules", Zeolites, 4, 188 (1984).   DOI
24 J. Kager and D. M. Ruthven, "On the comparison between macroscopic and n.m.r, measurements of intracrystalline diffusion in zeolites", Zeolites, 9, 267 (1989).   DOI
25 I. H. Doetsch and D. M. Ruthven, "Diffusion of Hydrocarbons in 13X Zeolite", AlChE. J., 22, 882 (1976).   DOI
26 J. Kager and P. Volkmer, "Comparison of predicted and nuclear magnetic resonance zeolitic diffusion coefficients", J.C.S., 76, 1562 (1980).
27 M. A. Granato, M. Jorge, T. J. H. Vlugt, and A. E. Rodrigues, "Diffusion of propane, propylene and isobutane in 13X zeolite by molecular dynamics", Chem. Eng. Sci., 65, 2656 (2010).   DOI
28 A. Azimi and M. Mirzaei, "Determination of effective diffusion coefficient of methane adsorption on activated carbon", World Applied Sciences Journal, 17, 1109 (2012).
29 Y. H. Oh, J. H. Lee, and D. H. Lee, "Adsorption and diffusion properties of heavy metals in zeolite synthesized from coal fly ash", J. Korea Solid Wastes Engineering Society, 17, 201 (2000).
30 D. Saha, Z. Bao, F. Jia, and S. Deng, "Adsorption of $CO_2$, $CH_4$, $N_2$O, and $N_2$ on MOF-5, MOF-177, and Zeolite 5A", Environ. Sci. Technol., 44, 1820 (2010).   DOI
31 I. Mamaliga, W. Schabel, and M. Kind, "Measurements of sorption isotherms and diffusion coefficients by means of a magnetic suspension balance", Chem. Eng. Proc., 43, 753 (2004).   DOI
32 H. H. Min, Y. I. Park, J. S. Chang, Y. K. Park, and C. H. Cho, "Elucidation of the mechanism of propylene/propane separation through faujasite zeolite membrane", Membr. J., 28, 351 (2018).   DOI