• Title/Summary/Keyword: Bacterial wilt

Search Result 169, Processing Time 0.027 seconds

A Study on Contamination and Disinfection of Film Cassette (Film Cassette의 세균 오염도와 소독에 관한 연구)

  • Kweon, Dae-Cheol;Chung, Kyung-Mo;Choi, Ji-Won
    • Journal of radiological science and technology
    • /
    • v.23 no.2
    • /
    • pp.55-61
    • /
    • 2000
  • In July 2000, a bacteria infection on film cassette contact surface was examined at the diagnostic radiology department of the S. hospital. The objective of this study was to assess the contamination level on film cassette contact surface as a predictor of patient to prevent from nosocomial infection. The study showed that the laboratory result was identified non-pathologic bacterial in the four different cassette size of the contact surface. The study concludes that presence of a bacterial infection wilt prevent a using antiseptic technique on film cassette contact surface. Also the education of nosocomial infection for radiographer will be required.

  • PDF

Breeding Cytoplasmic Male Sterile Lines Resistant to Phytophthora capsici and Ralstonia solanacearum in Capsicum Pepper (역병-풋마름병 복합저항성 세포질웅성불임계 고추 육성)

  • Lee, Jae-Moo;Kim, Byung-Soo
    • Current Research on Agriculture and Life Sciences
    • /
    • v.28
    • /
    • pp.39-46
    • /
    • 2010
  • Selection procedures for breeding lines resistant to both bacterial wilt caused by Ralstonia solanacearum and Phytophthora blight caused by P. capsici were executed to generations from $F_2$ and $BC_1F_1$ to $F_4$ and $BC_1F_3$ of crosses between a Phytophthora resistant breed, 'Chilbok No. 1' and bacterial wilt resistant accessions introduced from Vietnam during 2009 and 2010. The breeding populations or lines were tested for resistance to P. capsici and resistant plants were selected. The resistant selections were inoculated with R. solanacearum to discard susceptible plants. Resistance to P. capsici was conspicuously improved by selection from $F_2$ and $BC_1F_1$ and the final selections showed a similar level of resistance to P. capsici as a commercial Phytophthora resistant cultivar, Muhanjilju. A few $BC_1F_2$ selections were crossed to a cytoplasmic male sterile line, Chilbok-A, to identify their nuclear genotype interacting with male sterile cytoplasm. Majority of them was fixed to maintainer (Nrfrf) and only two resulted segregating into male sterile and male fertile plants indicating that the pollen parents were heterozygous in the fertility-restoring gene.

  • PDF

Genetic and Pathogenic Characterization of Bacterial Wilt Pathogen, Ralstonia pseudosolanacearum (Ralstonia solanacearum Phylotype I), on Roses in Korea

  • Lee, Ingyeong;Kim, Yeong Son;Kim, Jin-Won;Park, Duck Hwan
    • The Plant Pathology Journal
    • /
    • v.36 no.5
    • /
    • pp.440-449
    • /
    • 2020
  • The purpose of this study was to analyze the genetic and pathogenic characteristics of Ralstonia pseudosolanacearum in roses in Korea, and to examine the similarities and differences between Korean isolates and the first-reported European strains. Between 2017 and 2019, seventeen isolates from rose plants were identified as R. pseudosolanacearum using Ralstonia-specific primers. All 17 isolates were identified as race 1 using race-specific primers, and were confirmed as biovar 3 due to their ability to utilize carbon sources. Multiplex PCR using phylotype discriminating specific primers identified the 17 isolates as phylotype I. Sequevar comparison with reference sequevars using the sequences of the egl, mutS, and fliC genes, and only the egl gene, revealed that the strains evaluated in this study corresponded to sequevar I-33. The pathogenicity in roses differed depending on the rose cultivars. The different methods used for the genetic characterization of R. pseudosolanacearum indicate that the 17 rose bacterial wilt isolates had the same genetic characteristics. The lack of genetic variation in these isolates indicates their recent introduction from other countries (likely European countries). Therefore, appropriate quarantine and control measures should be taken in order to avoid further increases in the pathogenicity and/or secondary host range of R. pseudosolanacearum through genetic mutation.

Breeding of the native vegetables using the biotechnology

  • Iwamoto, Yuzuri
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2005.11a
    • /
    • pp.106-111
    • /
    • 2005
  • For breeding of a new rootstock for eggplant production, somatic hybrids between two species, Solanum integrifolium and S. sanitwongsei were obtained through protoplast fusion. The former species has been commonly used for rootstock for eggplant production in Japan. Eggplants on these rootstocks are more productive than ungrafted plants, but are susceptible to bacterial wilt caused Ralstonia solanacearum. While the latter species is resistant, the growth of eggplants on this rootstock is rather slow and low yield. Protoplast of both species were isolated from cotyledons, and inactivated with iodoacetamide or UV-irradiation, then fused electrically. The fused products were then cultured. Regenerated plantlets were then transplanted on soil then maintained in a green house. The plants were classified into four groups. Those in the first group showed morphological characters intermediate of the parentalspecies. The plants bore fruit with viable seeds. The plants showed a chromosome number of 2n=48, the sum of those of the parental species, and are suggested to be symmetric fusion products. While plants in the other groupswas less vigorous and showed chromosome number 2n= 68 to 72 suggesting asymmetric fusion products by genomic in situ hybridization(GISH). Isozyme pattern of shikimate dehydrogenase (SKDH; EC 1.1.1.25), isocitrate dehydrogenase (IDH; EC 1.1.1.41) and phosphoglucomutase (PGM; EC 2.7.5.1) showed that 24 regenerated plants in three groups were somatic hybrids. Analysis of random amplified polymorphic DNA (RAPD) showed that 43 S. integrifolium-specific and 57 S. sanitwongsei-specific bands were all found in 24 plants. Both somatic hybrids and its S1 plants were found to be resistant to bacterial wilt, and eggplant grafted these plants using for rootstocks were more productive than grafted mother plants. Now, S1 progenies are used for commercial eggplant production in Osaka Prefecture.

  • PDF

Stable Expression of TMV Resistance and Responses to Major Tobacco Diseases in the Fifth Generation of TMV CP Transgenic Tobacco

  • Park, Seong-Weon;Lee, Ki-Won;Lee, Cheong-Ho;Kim, Sang-Seock;Park, Eun-Kyung;Choi, Soon-Yong
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.20 no.1
    • /
    • pp.66-70
    • /
    • 1998
  • TMV resistant lines (TRLs) originated from the Blo plant of Nicotiana tabacum cv. NC82 transformed with TMV coat protein cDNA which initially showed delayed disease symptom were selected for increased resistance in each subsequent generation. The result of field experiment of the transgenic tobacco lines in the fifth generation for TMV resistance and their response to other tobacco diseases (black shank, bacterial wilt, and powdery mildew) is described in this report. When fifteen TRLs of the fifth generation were tested for TMV resistance by mechanically inoculating the individual plants, over 95 percent of the plants of 6 lines showed complete resistance even 8 weeks after the inoculation. Average frequency of the resistant plants in TRLs of the fifth generation 8 weeks after the inoculation was 87%. Stable insertion and expression of TMV coat protein cDNA in the fifth generation of the transgenic tobacco plant were confirmed by PCR and immunoblot hybridization, respectively. All TRLs were resistant to the black shank but were susceptible to the bacterial wilt disease and the powdery mildew to the same degree as non-transgenic NC82 was. Therefore, it was indicated that the phenotypes related at least to disease resistance were not changed in the transgenic tobacco. Key words : TMV CP cDNA, TMV resistant tobacco plant, transformation.

  • PDF

Ralstonia solanacearum Type III Effectors with Predicted Nuclear Localization Signal Localize to Various Cell Compartments and Modulate Immune Responses in Nicotiana spp.

  • Jeon, Hyelim;Kim, Wanhui;Kim, Boyoung;Lee, Sookyeong;Jayaraman, Jay;Jung, Gayoung;Choi, Sera;Sohn, Kee Hoon;Segonzac, Cecile
    • The Plant Pathology Journal
    • /
    • v.36 no.1
    • /
    • pp.43-53
    • /
    • 2020
  • Ralstonia solanacearum (Rso) is a causal agent of bacterial wilt in Solanaceae crops worldwide including Republic of Korea. Rso virulence predominantly relies on type III secreted effectors (T3Es). However, only a handful of Rso T3Es have been characterized. In this study, we investigated subcellular localization of and manipulation of plant immunity by 8 Rso T3Es predicted to harbor a nuclear localization signal (NLS). While 2 of these T3Es elicited cell death in both Nicotiana benthamiana and N. tabacum, only one was dependent on suppressor of G2 allele of skp1 (SGT1), a molecular chaperone of nucleotide-binding and leucine-rich repeat immune receptors. We also identified T3Es that differentially regulate flg22-induced reactive oxygen species production and gene expression. Interestingly, several of the NLS-containing T3Es translationally fused with yellow fluorescent protein accumulated in subcellular compartments other than the cell nucleus. Our findings bring new clues to decipher Rso T3E function in planta.

Screening of Tomato Cultivars Resistant to Bacterial Canker by Seedling Test (유묘검정법을 이용한 궤양병 저항성 토마토품종 선발)

  • Han, You-Kyoung;Han, Kyung-Sook;Lee, Seong-Chan;Kim, Hyung-Hwan;Kim, Su;Kim, Dong-Hwi
    • Research in Plant Disease
    • /
    • v.16 no.3
    • /
    • pp.290-293
    • /
    • 2010
  • Bacterial canker, caused by Clavibacter michiganensis subsp. michiganensis, is a very damaging disease to tomato (Lycopersicon esculentum) farm in Korea. It infects tomato, spreads through the xylem and causes bacterial wilt and canker. Selection of resistant cultivar is the best way to prevent or reduce the occurrence of the disease. Thirty-nine tomato cultivars, twenty-one cherry tomato cultivars and thirteen rootstock tomato cultivars were inoculated with Clavibacter michiganensis subsp. michiganensis, to evaluate tomato cultivarspecific resistance against bacterial canker. In the evaluation of 73 major commercial cultivars, 'Sunmyung', 'Sweet', 'Akiko', 'Dadaki', 'Match', 'Magnet', 'Friend', and 'Greenpower' were found to have a high level of resistance to bacterial canker of tomatoes.

Microbe-Based Plant Defense with a Novel Conprimycin Producing Streptomyces Species

  • Kwak, Youn-Sig
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.05a
    • /
    • pp.54-54
    • /
    • 2015
  • Crops lack genetic resistance to most necrotrophic soil-borne pathogens and parasitic nematodes that are ubiquitous in agroecosystems worldwide. To overcome this disadvantage, plants recruit and nurture specific group of antagonistic microorganisms from the soil microbiome to defend their roots against pathogens and other pests. The best example of this microbe-based defense of roots is observed in disease-suppressive soils in which the suppressiveness is induced by continuously growing crops that are susceptible to a pathogen. Suppressive soils occur globally yet the microbial basis of most is still poorly described. Fusarium wilt, caused by Fusarium oxysporum f. sp. fragariae is a major disease of strawberry and is naturally suppressed in Korean fields that have undergone continuous strawberry monoculture. Here we show that members of the genus Streptomyces are the specific bacterial components of the microbiome responsible for the suppressiveness that controls Fusarium wilt of strawberry. Furthermore, genome sequencing revealed that Streptomyces griseus, which produces a novel thiopetide antibiotic, is the principal species involved in the suppressiveness. Finally, chemical-genetic studies demonstrated that S. griseus antagonizes F. oxysporum by interfering with fungal cell wall synthesis. An attack by F. oxysporum initiates a defensive "cry for help" by strawberry root and the mustering of microbial defenses led by Streptomyces. These results provide a model for future studies to elucidate the basis of microbially-based defense systems and soil suppressiveness from the field to the molecular level.

  • PDF

Detection of the Causal Agent of Bacterial Wilt, Ralstonia solanacearum in the Seeds of Solanaceae by PCR (가지과 종자에서 Ralstonia solanacearum의 검출을 위한 PCR 방법)

  • Cho, Jung-Hee;Yim, Kyu-Ock;Lee, Hyok-In;Baeg, Ji-Hyun;Cha, Jae-Soon
    • Research in Plant Disease
    • /
    • v.17 no.2
    • /
    • pp.184-190
    • /
    • 2011
  • Ralstonia solanacearum, a causal agent of bacterium wilt is very difficult to control once the disease becomes endemic. Thus, Ralstonia solanacearum is a plant quarantine bacterium in many countries including Korea. In this study, we developed PCR assays, which can detect Ralstonia solanacearum from the Solanaceae seeds. Primers RS-JH-F and RS-JH-R amplified specifically a 401 bp fragment only from Ralstonia solanacearum race 1 and race 3. The nested PCR primers, RS-JH-F-ne and RS-JH-R-ne that were designed inside of 1st PCR amplicon amplified specifically a 131 bp fragment only from Ralstonia solanacearum race 1 and race 3. The primers did not amplify any non-specific DNA from the seed extracts of the Solanaceae including tomato and pepper. When detection sensitivity were compared using the Solanaceae seeds inoculated with target bacteria artificially, the nested PCR method developed in this study 100 times more sensitive than ELISA and selective medium. Therefore, we believe that the PCR assays developed in this work is very useful to detect Ralstonia solanacearum in the Solanaceae seeds.