Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.08.2019.0227

Ralstonia solanacearum Type III Effectors with Predicted Nuclear Localization Signal Localize to Various Cell Compartments and Modulate Immune Responses in Nicotiana spp.  

Jeon, Hyelim (Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University)
Kim, Wanhui (Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University)
Kim, Boyoung (Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University)
Lee, Sookyeong (Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University)
Jayaraman, Jay (Department of Life Sciences, Pohang University of Science and Technology)
Jung, Gayoung (Department of Life Sciences, Pohang University of Science and Technology)
Choi, Sera (Department of Life Sciences, Pohang University of Science and Technology)
Sohn, Kee Hoon (Department of Life Sciences, Pohang University of Science and Technology)
Segonzac, Cecile (Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University)
Publication Information
The Plant Pathology Journal / v.36, no.1, 2020 , pp. 43-53 More about this Journal
Abstract
Ralstonia solanacearum (Rso) is a causal agent of bacterial wilt in Solanaceae crops worldwide including Republic of Korea. Rso virulence predominantly relies on type III secreted effectors (T3Es). However, only a handful of Rso T3Es have been characterized. In this study, we investigated subcellular localization of and manipulation of plant immunity by 8 Rso T3Es predicted to harbor a nuclear localization signal (NLS). While 2 of these T3Es elicited cell death in both Nicotiana benthamiana and N. tabacum, only one was dependent on suppressor of G2 allele of skp1 (SGT1), a molecular chaperone of nucleotide-binding and leucine-rich repeat immune receptors. We also identified T3Es that differentially regulate flg22-induced reactive oxygen species production and gene expression. Interestingly, several of the NLS-containing T3Es translationally fused with yellow fluorescent protein accumulated in subcellular compartments other than the cell nucleus. Our findings bring new clues to decipher Rso T3E function in planta.
Keywords
bacterial wilt; innate immunity; Nicotiana spp.; Ralstonia solanacearum; type III effectors;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Park, E., Lee, H.-Y., Woo, J., Choi, D. and Dinesh-Kumar, S. P. 2017. Spatiotemporal monitoring of Pseudomonas syringae effectors via type iii secretion using split fluorescent protein fragments. Plant Cell 29:1571-1584.   DOI
2 Peart, J. R., Cook, G., Feys, B. J., Parker, J. E. and Baulcombe, D. C. 2002. An EDS1 orthologue is required for N-mediated resistance against tobacco mosaic virus. Plant J. 29:569-579.   DOI
3 Peeters, N., Carrere, S., Anisimova, M., Plener, L., Cazale, A.-C. and Genin, S. 2013a. Repertoire, unified nomenclature and evolution of the Type III effector gene set in the Ralstonia solanacearum species complex. BMC Genomics 14:859.   DOI
4 Peeters, N., Guidot, A., Vailleau, F. and Valls, M. 2013b. Ralstonia solanacearum, a widespread bacterial plant pathogen in the post-genomic era. Mol. Plant Pathol. 14:651-662.   DOI
5 Poueymiro, M., Cunnac, S., Barberis, P., Deslandes, L., Peeters, N., Cazale-Noel, A.-C., Boucher, C. and Genin, S. 2009. Two type III secretion system effectors from Ralstonia solanacearum GMI1000 determine host-range specificity on tobacco. Mol. Plant-Microbe Interact. 22:538-550.   DOI
6 Priller, J. P. R., Reid, S., Konein, P., Dietrich, P. and Sonnewald, S. 2016. The Xanthomonas campestris pv. vesicatoria type-3 effector XopB inhibits plant defence responses by interfering with ROS production. PLoS ONE 11:e0159107.   DOI
7 Pyc, M., Cai, Y., Gidda, S. K., Yurchenko, O., Park, S., Kretzschmar, F. K., Ischebeck, T., Valerius, O., Braus, G. H., Chapman, K. D., Dyer, J. M. and Mullen, R. T. 2017. Arabidopsis lipid droplet-associated protein (LDAP) - interacting protein (LDIP) influences lipid droplet size and neutral lipid homeostasis in both leaves and seeds. Plant J. 92:1182-1201.   DOI
8 Qi, J., Wang, J., Gong, Z. and Zhou, J.-M. 2017. Apoplastic ROS signaling in plant immunity. Curr. Opin. Plant Biol. 38:92-100.   DOI
9 Sang, Y. and Macho, A. P. 2017. Analysis of PAMP-triggered ROS burst in plant immunity. In: Plant pattern recognition receptors, eds. by L. Shan and P. He, pp. 143-153. Humana Press, New York, NY, USA.
10 Qiu, W., Park, J.-W. and Scholthof, H. B. 2002. Tombusvirus p19-mediated suppression of virus-induced gene silencing is controlled by genetic and dosage features that influence pathogenicity. Mol. Plant-Microbe Interact. 15:269-280.   DOI
11 Segonzac, C., Feike, D., Gimenez-Ibanez, S., Hann, D. R., Zipfel, C. and Rathjen, J. P. 2011. Hierarchy and roles of pathogenassociated molecular pattern-induced responses in Nicotiana benthamiana. Plant Physiol. 156:687-699.   DOI
12 Sang, Y., Wang, Y., Ni, H., Cazalé, A.-C., She, Y.-M., Peeters, N. and Macho, A. P. 2018. The Ralstonia solanacearum type III effector RipAY targets plant redox regulators to suppress immune responses. Mol. Plant Pathol. 19:129-142.   DOI
13 Sarris, P. F., Duxbury, Z., Huh, S. U., Ma, Y., Segonzac, C., Sklenar, J., Derbyshire, P., Cevik, V., Rallapalli, G., Saucet, S. B., Wirthmueller, L., Menke, F. L. H., Sohn, K. H. and Jones, J. D. G. 2015. A plant immune receptor detects pathogen effectors that target WRKY transcription factors. Cell 161:1089-1100.   DOI
14 Schandry, N., de Lange, O., Prior, P. and Lahaye, T. 2016. TALElike effectors are an ancestral feature of the Ralstonia solanacearum species complex and converge in DNA targeting specificity. Front. Plant Sci. 7:1225.
15 Sohn, K. H., Segonzac, C., Rallapalli, G., Sarris, P. F., Woo, J. Y., Williams, S. J., Newman, T. E., Paek, K. H., Kobe, B. and Jones, J. D. G. 2014. The nuclear immune receptor RPS4 is required for RRS1SLH1-dependent constitutive defense activation in Arabidopsis thaliana. PLoS Genet. 10:e1004655.   DOI
16 Hann, D. R. and Rathjen, J. P. 2007. Early events in the pathogenicity of Pseudomonas syringae on Nicotiana benthamiana. Plant J. 49:607-618.   DOI
17 Sole, M., Popa, C., Mith, O., Sohn, K. H., Jones, J. D. G., Deslandes, L. and Valls, M. 2012. The awr gene family encodes a novel class of Ralstonia solanacearum type III effectors displaying virulence and avirulence activities. Mol. Plant-Microbe Interact. 25:941-953.   DOI
18 Strasser, R. 2018. Protein quality control in the endoplasmic reticulum of plants. Annu. Rev. Plant Biol. 69:147-172.   DOI
19 Gueneron, M., Timmers, A. C., Boucher, C. and Arlat, M. 2000. Two novel proteins, PopB, which has functional nuclear localization signals, and PopC, which has a large leucine-rich repeat domain, are secreted through the hrp-secretion apparatus of Ralstonia solanacearum. Mol. Microbiol. 36:261-277.   DOI
20 Guo, Y., Cordes, K. R., Farese, R. V. Jr. and Walther, T. C. 2009. Lipid droplets at a glance. J. Cell Sci. 122:749-752.   DOI
21 Heese, A., Hann, D. R., Gimenez-Ibanez, S., Jones, A. M., He, K., Li, J., Schroeder, J. I., Peck, S. C. and Rathjen, J. P. 2007. The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc. Natl. Acad. Sci. U. S. A. 104:12217-12222.   DOI
22 Hicks, S. W. and Galan, J. E. 2013. Exploitation of eukaryotic subcellular targeting mechanisms by bacterial effectors. Nat. Rev. Microbiol. 11:316-326.   DOI
23 Zhao, C., Wang, H., Lu, Y., Hu, J., Qu, L., Li, Z., Wang, D., He, Y., Valls, M., Coll, N. S., Chen, Q. and Lu, H. 2019. Deep sequencing reveals early reprogramming of Arabidopsis root transcriptomes upon Ralstonia solanacearum infection. Mol. Plant-Microbe Interact. 32:813-827.   DOI
24 Sun, Y., Li, P., Shen, D., Wei, Q., He, J. and Lu, Y. 2019. The Ralstonia solanacearum effector RipN suppresses plant PAMPtriggered immunity, localizes to the endoplasmic reticulum and nucleus, and alters the NADH/NAD+ ratio in Arabidopsis. Mol. Plant Pathol. 20:533-546.   DOI
25 Wang, R. and Brattain, M. G. 2007. The maximal size of protein to diffuse through the nuclear pore is larger than 60kDa. FEBS Lett. 581:3164-3170.   DOI
26 Wei, Y., Sang, Y. and Macho, A. P. 2017. The Ralstonia solanacearum type III effector RipAY is phosphorylated in plant cells to modulate its enzymatic activity. Front. Plant Sci. 8:1899.   DOI
27 Zheng, X., Li, X., Wang, B., Cheng, D., Li, Y., Li, W., Huang, M., Tan, X., Zhao, G., Song, B., Macho, A. P., Chen, H. and Xie, C. 2019. A systematic screen of conserved Ralstonia solanacearum effectors reveals the role of RipAB, a nuclearlocalized effector that suppresses immune responses in potato. Mol. Plant Pathol. 20:547-561.   DOI
28 Zipfel, C., Robatzek, S., Navarro, L., Oakeley, E. J., Jones, J. D. G., Felix, G. and Boller, T. 2004. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428:764-767.   DOI
29 Jacquier, N., Mishra, S., Choudhary, V. and Schneiter, R. 2013. Expression of oleosin and perilipins in yeast promotes formation of lipid droplets from the endoplasmic reticulum. J. Cell Sci. 126:5198-5209.   DOI
30 Hogenhout, S. A., Van der Hoorn, R. A., Terauchi, R. and Kamoun, S. 2009. Emerging concepts in effector biology of plant-associated organisms. Mol. Plant-Microbe Interact. 22:115-122.   DOI
31 Jayaraman, J., Choi, S., Prokchorchik, M., Choi, D. S., Spiandore, A., Rikkerink, E. H., Templeton, M. D., Segonzac, C. and Sohn, K. H. 2017. A bacterial acetyltransferase triggers immunity in Arabidopsis thaliana independent of hypersensitive response. Sci. Rep. 7:3557.   DOI
32 Jones, J. D. G. and Dangl, J. L. 2006. The plant immune system. Nature 444:323-329.   DOI
33 Couto, D. and Zipfel, C. 2016. Regulation of pattern recognition receptor signalling in plants. Nat. Rev. Immunol. 16:537-552.   DOI
34 Alfano, J. R. and Collmer, A. 2004. Type III secretion system effector proteins: double agents in bacterial disease and plant defense. Annu. Rev. Phytopathol. 42:385-414.   DOI
35 Buttner, D. 2016. Behind the lines-actions of bacterial type III effector proteins in plant cells. FEMS Microbiol. Rev. 40:894-937.   DOI
36 Choi, S., Jayaraman, J., Segonzac, C., Park, H.-J., Park, H., Han, S.-W. and Sohn, K. H. 2017. Pseudomonas syringae pv. actinidiae type III effectors localized at multiple cellular compartments activate or suppress innate immune responses in Nicotiana benthamiana. Front. Plant Sci. 8:2157.   DOI
37 Kadota, Y., Shirasu, K. and Guerois, R. 2010. NLR sensors meet at the SGT1-HSP90 crossroad. Trends Biochem. Sci. 35:199-207.   DOI
38 de Lange, O., Schreiber, T., Schandry, N., Radeck, J., Braun, K. H., Koszinowski, J., Heuer, H., Straus, A. and Lahaye, T. 2013. Breaking the DNA-binding code of Ralstonia solanacearum TAL effectors provides new possibilities to generate plant resistance genes against bacterial wilt disease. New Phytol. 199:773-786.   DOI
39 Deslandes, L. and Genin, S. 2014. Opening the Ralstonia solanacearum type III effector tool box: insights into host cell subversion mechanisms. Curr. Opin. Plant Biol. 20:110-117.   DOI
40 Deslandes, L., Olivier, J., Peeters, N., Feng, D. X., Khounlotham, M., Boucher, C., Somssich, I., Genin, S. and Marco, Y. 2003. Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc. Natl. Acad. Sci. U. S. A. 100:8024-8029.   DOI
41 Khan, M., Seto, D., Subramaniam, R. and Desveaux, D. 2018. Oh, the places they'll go! A survey of phytopathogen effectors and their host targets. Plant J. 93:651-663.   DOI
42 Kosugi, S., Hasebe, M., Tomita, M. and Yanagawa, H. 2009. Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs. Proc. Natl. Acad. Sci. U. S. A. 106:10171-10176.   DOI
43 Lacomme, C. and Santa Cruz, S. 1999. Bax-induced cell death in tobacco is similar to the hypersensitive response. Proc. Natl. Acad. Sci. U. S. A. 96:7956-7961.   DOI
44 Genin, S. and Denny, T. P. 2012. Pathogenomics of the Ralstonia solanacearum species complex. Annu. Rev. Phytopathol. 50:67-89.   DOI
45 Deslandes, L. and Rivas, S. 2011. The plant cell nucleus: a true arena for the fight between plants and pathogens. Plant Signal. Behav. 6:42-48.   DOI
46 Engler, C. and Marillonnet, S. 2014. Golden Gate cloning. In: DNA cloning and assembly methods, eds. by S. Valla and R. Lale, pp. 119-131. Humana Press, Totowa, NJ, USA.
47 Fujiwara, S., Kawazoe, T., Ohnishi, K., Kitagawa, T., Popa, C., Valls, M., Genin, S., Nakamura, K., Kuramitsu, Y., Tanaka, N. and Tabuchi, M. 2016. RipAY, a plant pathogen effector protein, exhibits robust ${\gamma}$-glutamyl cyclotransferase activity when stimulated by eukaryotic thioredoxins. J. Biol. Chem. 291:6813-6830.   DOI
48 Gimenez-Ibanez, S., Hann, D. R., Chang, J. H., Segonzac, C., Boller, T. and Rathjen, J. P. 2018. Differential suppression of Nicotiana benthamiana innate immune responses by transiently expressed Pseudomonas syringae type III effectors. Front. Plant Sci. 9:688.   DOI
49 Li, L., Atef, A., Piatek, A., Ali, Z., Piatek, M., Aouida, M., Sharakuu, A., Mahjoub, A., Wang, G., Khan, S., Fedoroff, N. V., Zhu, J.-K. and Mahfouz, M. M. 2013. Characterization and DNA-binding specificities of Ralstonia TAL-like effectors. Mol. Plant 6:1318-1330.   DOI
50 Le Roux, C., Huet, G., Jauneau, A., Camborde, L., Tremousaygue, D., Kraut, A., Zhou, B., Levaillant, M., Adachi, H., Yoshioka, H., Raffaele, S., Berthome, R., Coute, Y., Parker, J. E. and Deslandes, L. 2015. A receptor pair with an integrated decoy converts pathogen disabling of transcription factors to immunity. Cell 161:1074-1088.   DOI
51 Macho, A. P. 2016. Subversion of plant cellular functions by bacterial type-III effectors: beyond suppression of immunity. New Phytol. 210:51-57.   DOI
52 Macho, A. P. and Zipfel, C. 2015. Targeting of plant pattern recognition receptor-triggered immunity by bacterial type-III secretion system effectors. Curr. Opin. Microbiol. 23:14-22.   DOI
53 Newman, T. E., Lee, J., Williams, S. J., Choi, S., Halane, M. K., Zhou, J., Solomon, P., Kobe, B., Jones, J. D. G., Segonzac, C. and Sohn, K. H. 2019. Autoimmunity and effector recognition in Arabidopsis thaliana can be uncoupled by mutations in the RRS1-R immune receptor. New Phytol. 222:954-965.   DOI
54 Marois, E., Van den Ackerveken, G. and Bonas, U. 2002. The Xanthomonas type III effector protein AvrBs3 modulates plant gene expression and induces cell hypertrophy in the susceptible host. Mol. Plant-Microbe Interact. 15:637-646.   DOI
55 Motion, G. B., Amaro, T. M., Kulagina, N. and Huitema, E. 2015. Nuclear processes associated with plant immunity and pathogen susceptibility. Brief. Funct. Genomics 14:243-252.   DOI
56 Mukaihara, T., Hatanaka, T., Nakano, M. and Oda, K. 2016. Ralstonia solanacearum type III effector RipAY is a glutathionedegrading enzyme that is activated by plant cytosolic thioredoxins and suppresses plant immunity. mBio 7:e00359-16.
57 Nakano, M., Oda, K. and Mukaihara, T. 2017. Ralstonia solanacearum novel E3 ubiquitin ligase (NEL) effectors RipAW and RipAR suppress pattern-triggered immunity in plants. Microbiology 163:992-1002.   DOI
58 Navarro, L., Zipfel, C., Rowland, O., Keller, I., Robatzek, S., Boller, T. and Jones, J. D. G. 2004. The transcriptional innate immune response to flg22. Interplay and overlap with Avr gene-dependent defense responses and bacterial pathogenesis. Plant Physiol. 135:1113-1128.   DOI
59 Nguyen Ba, A. N., Pogoutse, A., Provart, N. and Moses, A. M. 2009. NLStradamus: a simple Hidden Markov Model for nuclear localization signal prediction. BMC Bioinformatics 10:202.   DOI
60 Nimchuk, Z. L., Fisher, E. J., Desveaux, D., Chang, J. H. and Dangl, J. L. 2007. The HopX (AvrPphE) family of Pseudomonas syringae type III effectors require a catalytic triad and a novel N-terminal domain for function. Mol. Plant-Microbe Interact. 20:346-357.   DOI