• 제목/요약/키워드: Bacterial reverse mutation

검색결과 64건 처리시간 0.031초

Mutagenicities of Workplace Chemicals in Korea

  • Maeng, Seung-Hee;Lee, Jong-Yun;Lee, Yong-Mook;Chung, Hai-Won;Yu, Il-Je
    • 한국환경성돌연변이발암원학회지
    • /
    • 제21권1호
    • /
    • pp.57-62
    • /
    • 2001
  • Bacterial reverse mutation assays were performed for 20 workplace chemicals in Korea, which were selected among workplace chemicals under the Korea Industrial Safety and Health Act (KISHA) with the occupational exposure levels (OELs). The assays were carried out by using the pre-incubation method ($37 ^{\circ}C$, 20 min) with and without metabolic activation using Salmonella typhimurium TA98, TA100, TA1535, TA1537 and E. coli WP2uvrA. The chemicals were tested at 5 concentrations both in the preliminary and the second assays. Despite the cell toxicities, there were no chemical-induced mutagenicities with or without metabolic activation in any of 20 chemicals.

  • PDF

Bacterial Reverse Mutation Test of Verbenalin

  • Hye Jeong Shin;Yi Gun Lim;Ji Su Ha;Gabsik Yang;Tae Han Yook
    • 대한약침학회지
    • /
    • 제25권4호
    • /
    • pp.364-368
    • /
    • 2022
  • Objectives: Verbenalin is a compound found in herbs such as Cornus officinalis and Verbena officinalis. This study investigated whether verbenalin is safe by analyzing its mutagenicity. Methods: To examine the mutagenic potential of verbenalin, a bacterial reverse mutation test (Ames test) was conducted with Salmonella typhimurium and Escherichia coli strains. Experiments with and without metabolic activity were performed. Results: The mean colony number was less than double that of the control. Growth inhibition and precipitation of verbenalin were not apparent in all strains at different concentrations regardless of metabolic activity. Conclusion: Verbenalin did not show any signs of mutagenicity in this study. Additional toxicity studies including repeated oral toxicity, reproductive toxicity, and carcinogenicity tests are needed.

두릅나무 추출물의 유전독성평가 (Genotoxicity study of Aralia elata extract in bacterial and mammalian cell system)

  • 정영신;이석종;최선아;이장하;류재천;홍은경
    • 한국환경성돌연변이발암원학회지
    • /
    • 제22권4호
    • /
    • pp.319-323
    • /
    • 2002
  • In order to investigate the safety of Aralia elata extract causing the reduction in the blood glucose level and oxidative stress in diabetes animals, these genotoxicity studies in bacterial and mammalian cell assay system such as Ames bacterial reverse mutation test and chromosomal aberration assay were performed. As results, in Ames bacterial reversion assay the extract in the range of 5,000-625 ug/plate did not induce mutagenicity in Salmonella typhimurium TA 98, TA 100, TA 1535 and TA 1537 strains with and without metabolic activation of S-9 mixture. For chromosomal aberration assay, $IC_{50}$ (50% inhibition concentration of cell growth) of the extract were determined; 792 $\mu\textrm{g}$/$m\ell$ without and 524 $\mu\textrm{g}$/$m\ell$ with S-9 mixture in Chinese hamster lung (CHL) fibroblast cell culture. Any significant chromosomal aberration was not observed in CHL cells treated with the extract at the concentrations of 792, 396 and 198 $\mu\textrm{g}$/$m\ell$ or 524, 262 and 131 $\mu\textrm{g}$/$m\ell$ in the absence or presence of S-9 metabolic activation, respectively. From these results, Aralia elata extract did not induce any harmful effects on the gene in bacteria and mammalian cell system used in these experiments.

  • PDF

Assessment of genotoxicity of Ssanghwa-tang, an herbal formula, by using bacterial reverse mutation, chromosome aberration, and in vivo micronucleus tests

  • Jang, Ji-Hye;Seo, Chang-Seob;Lee, Mee-Young;Shin, Hyeun-Kyoo;Han, Su-Cheol;Ha, Hyekyung
    • 대한한의학회지
    • /
    • 제42권4호
    • /
    • pp.25-39
    • /
    • 2021
  • Objectives: Ssanghwa-tang (SHT) is a traditional herbal formula comprising nine medicinal herbs, and it is used for reducing fatigue in Korea. SHT exerts various effects such as anti-inflammatory, antioxidant, and anti-aging activities, and protection against acute hepatotoxicity. However, the genotoxicity of SHT has not yet been established. Methods: Ten components were identified in SHT water extract by using high-performance liquid chromatography analysis. We assessed the genotoxicity of SHT by using bacterial reverse mutation (Ames test), chromosome aberration, and in vivo micronucleus tests. Results: The contents of paeoniflorin, glycyrrhizin, and liquiritin apioside in SHT were 15.57, 6.94, and 3.48 mg/g extract, respectively. SHT did not increase the revertant colonies of Salmonella typhimurium and Escherichia coli strains in the presence or absence of metabolic activity. Although SHT did not induce structurally abnormal chromosomes in Chinese hamster lung (CHL) cells in the presence of metabolic activity, the number of structurally aberrated chromosomes increased dose-dependently in the absence of metabolic activity. In the in vivo micronucleus test, SHT did not affect the formation of micronuclei compared with the vehicle control. Conclusions: Genotoxicity of SHT was not observed in the Ames test and in vivo micronucleus test. However, based on the results of chromosome aberration test, it can be presumed that SHT has the potential to induce genotoxicity because it induced structurally abnormal chromosomes in the absence of metabolic activity.

A Mutation of a Putative NDP-Sugar Epimerase Gene in Ralstonia pseudosolanacearum Attenuates Exopolysaccharide Production and Bacterial Virulence in Tomato Plant

  • Hyoung Ju Lee;Sang-Moo Lee;Minseo Choi;Joo Hwan Kwon;Seon-Woo Lee
    • The Plant Pathology Journal
    • /
    • 제39권5호
    • /
    • pp.417-429
    • /
    • 2023
  • Ralstonia solanacearum species complex (RSSC) is a soil borne plant pathogen causing bacterial wilt on various important crops, including Solanaceae plants. The bacterial pathogens within the RSSC produce exopolysaccharide (EPS), a highly complicated nitrogencontaining heteropolymeric polysaccharide, as a major virulence factor. However, the biosynthetic pathway of the EPS in the RSSC has not been fully characterized. To identify genes in EPS production beyond the EPS biosynthetic gene operon, we selected the EPS-defective mutants of R. pseudosolanacearum strain SL341 from Tn5-inserted mutant pool. Among several EPSdefective mutants, we identified a mutant, SL341P4, with a Tn5-insertion in a gene encoding a putative NDP-sugar epimerase, a putative membrane protein with sugar-modifying moiety, in a reverse orientation to EPS biosynthesis gene cluster. This protein showed similar to other NDP-sugar epimerases involved in EPS biosynthesis in many phytopathogens. Mutation of the NDP-sugar epimerase gene reduced EPS production and biofilm formation in R. pseudosolanacearum. Additionally, the SL341P4 mutant exhibited reduced disease severity and incidence of bacterial wilt in tomato plants compared to the wild-type SL341 without alteration of bacterial multiplication. These results indicate that the NDP-sugar epimerase gene is required for EPS production and bacterial virulence in R. pseudosolanacearum.

Genotoxicity Study of Water Extract of Anemarrhena asphodeloides and Phellodendron amurense in Bacterial and Mammalian Cell Systems

  • Chung, Young-Shin;Lee, Seok-Jong;Choi, Sun-A;Lee, Jang-Ha;Ryu, Jae-Chun;Hong, Eun-Kyung
    • Toxicological Research
    • /
    • 제20권1호
    • /
    • pp.43-47
    • /
    • 2004
  • In order to investigate the safety of a water extract (ADP) of 1 : 1 mixture of Anemarrhena rhizoma and Phellodendron cortex for alleviating benign prostate hyperplasia, genotoxicity studies in bacterial and mammalian cell assay systems, namely, the Ames bacterial reverse mutation and chromosomal aberration assays were performed. As shown by the results of the Ames bacterial reversion assay, ADP in the range of 625-5000 $\mu\textrm{g}$/plate did not induce mutagenicity in Salmonella typhimurium TA 98, TA 100, TA 1535 and TA 1537 strains in the absence or in the presence of S9 (the microsomal fraction of rat liver homogenate) metabolic activation. The $IC_{50}$ (50% cell growth inhibition concentration) values of ADP for the chromosomal aberration assay were determined; these were 2425 $\mu\textrm{g}$/ml in the absence and 8126 $\mu\textrm{g}$/ml in the presence of S9 metabolic activation in Chinese hamster lung (CHL) fibroblast cell culture. No chromosomal aberration was observed in CHL cells treated with ADP at 2425, 1212.5 and 606.25 $\mu\textrm{g}$/ml in the absence, or at 8126, 4063 and 2031.5 $\mu\textrm{g}$/ml in the presence of S9 metabolic activation. These results show that under the conditions used, ADP does not harmfully affect the bacterial or mammalian cell system at the gene level.

팔라티노스 및 팔라티노스 시럽에 대한 in vitro 변이원성 시험 (In Vitro Mutagenicity Tests on Palatinose and Palatinose Syrup)

  • 백남진;강재구;김정환;김달현;전영중;김제학
    • 한국식품과학회지
    • /
    • 제29권4호
    • /
    • pp.804-807
    • /
    • 1997
  • 제일제당주식회사에서는 미생물발효법을 이용하여 palatinose를 대량생산하게 되었다. Palatinose 산물의 안전성을 확인하기 위하여 1) Salmonella typhimurium을 이용한 미생물복귀돌연변이시험, 2) Chinese Hamster Lung (CHL) 세포를 이용한 in vitro 염색체이상시험을 실시하였다. Palatinose 및 palatinose syrup은 미생물복귀돌연변이 시험에서 10 mg/plate의 용량까지 복귀돌연변이를 유발하지 않았으며, CHL 세포에서도 5 mg/mL 농도에서 염색체이상을 유발하지 않았다. 이 결과는 palatinose 산물들이 위의 in vitro 변이원성시험계에서 돌연변이원성을 나타내지 않음을 보여준다.

  • PDF

Genotoxicity Study on Khal, a Halocidin Derivative, in Bacterial and Mammalian Cells

  • Kim, Youn-Jung;Kim, Mi-Soon;Jeon, Hee-Kyoung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • 제2권3호
    • /
    • pp.151-158
    • /
    • 2006
  • Khal was a synthetic congener of halocidin, a heterodimeric peptide consisting of 19 and 15 amino acid residues detected in Halocynthia aurantium. This compound was considered a candidate for the development of a novel peptide antibiotic. The genotoxicity of Khal was subjected to high throughput toxicity screening (HTTS) because they revealed strong antibacterial effects. Mouse lymphoma thymidine kinase ($tk^{+/-}$) gene assay (MOLY), single cell gel electrophoresis (Comet) assay and chromosomal aberration assay in mammalian cells and Ames reverse mutation assay in bacterial system were used as simplified, inexpensive, short-term in vitro screening tests in our laboratory. These compounds are not mutagenic in S. typhimurium TA98 and TA100 strains both in the presence and absence of metabolic activation. Before performing the comet assay, $IC_{20}$ of Khal was determined the concentration of $25.51\;{\mu}/mL\;and\;21.99\;{\mu}g/mL$ with and without S-9, respectively. In the comet assay, Khal was not induced DNA damage in mouse lymphoma cell line. Also, the mutation frequencies in the Khal-treated cultures were similar to the vehicle controls. It is suggests that Khal is non-mutagenic in MOLY assay. And no clastogenicity was observed in Khal-treated Chinese hamster lung cells. The results of this battery of assays indicate that Khal has no genotoxic potential in bacterial or mammalian cell systems. Therefore, we suggest that Khal, as the optimal candidates with both no genotoxic potential and antibacterial effects must be chosen.

Chrysin의 유전독성에 관한 연구 (Genotoxicity Studies of Chrysin)

  • 지승완;김창환;박미선;엄미옥;염태경;김옥희;강호일
    • Toxicological Research
    • /
    • 제21권1호
    • /
    • pp.71-75
    • /
    • 2005
  • Chrysin (5,7-dihydroxyflavone) is a flavonoid compound contained in many fruits, vegetables and honey. In our experiment, we investigated genotoxicity of chrysin using bacterial reverse mutation assay, chromosomal aberration test, in vivo micronucleus test. In bacterial reverse mutation assay, chrysin did not induce mutagenicity in Salmonella typhimurium TA98, TA100, TA1535, TA1537, TA102 with and without metabolic activation. In chromosome aberration test, chrysin did not also induce structural and numerical abberations regardless of metabolic activation in Chinese hamster lung fibroblast cells. In mouse micronucleus test, no significant increase in the occurrence of micronucleated polychromatic erythrocytes (MNPCE) was observed in ICR male mice orally administered with chrysin at the dose of 0.5, 1.0, 2.0 g/kg body weight. Taken together these results, chrysin has no mutagenic potential in our experiment.

Lactobacillus plantarum AF1와 Lactobacillus plantarum HD1이 생성한 조항균 물질의 유전학적 독성평가 (A Genotoxicological Safety Evaluation of Crude Antifungal Compounds Produced by Lactobacillus Plantarum AF1 and Lactobacillus Plantarum HD1)

  • 장해춘;고상범;이재준
    • 한국지역사회생활과학회지
    • /
    • 제26권4호
    • /
    • pp.633-645
    • /
    • 2015
  • This study investigates the genotoxicity of crude antifungal compounds produced by Lactobacillus plantarum AF1 (L.plantarum AF1) and Lactobacillus plantarum HD1 (L. plantarum HD1) isolated from kimchi. The genetic toxicity of crude antifungal compounds was evaluated in bacterial reverse mutation in Salmonella and Escherichia spp., chromosome aberrations in Chinese hamster lung cells, and micronucleous formations in mice. In bacterial reversion assays with Salmonella Typhimurium TA98, TA100, TA1535, TA1537, and WP2uvrA, crude antifungal compounds did not increase the number of revertant colonies in both the absence and presence of the 59 metabolic activation system. In the chromosome aberration test with Chinese hamster lung cells, crude antifungal compounds showed no increase in the frequency of chromosome aberrations in the short-period test with/without the S9 mix or in the continuos test. In the in vivo mouse micronucleus assay, crude antifungal compounds showed no increase in the frequency of polychromatic erythrocytes with micronuclei. The results show that crude antifungal compounds produced by L. plantarum AF1 and L. plantarum HD1 did not induce any genotoxicity.