• Title/Summary/Keyword: Bacterial grass culture

Search Result 5, Processing Time 0.019 seconds

Effect of a Bacterial Grass Culture on the Plant Growth and Disease Control in Tomato

  • Lee, Yong Seong;Naing, Kyaw Wai;Kim, Kil Yong
    • Research in Plant Disease
    • /
    • v.23 no.4
    • /
    • pp.295-305
    • /
    • 2017
  • This study aimed to investigate the plant growth-promoting and biocontrol potential of a grass culture with Paenibacillus ehimensis KWN8 on tomato. For this experiment, treatments of a chemical fertilizer (F), a bacterial grass culture (G), a 1/3 volume of G plus 2/3 F (GF), and F plus a synthetic fungicide (FSf) were applied to tomato leaves and roots. The result showed that the severity of Alternaria solani and Botrytis cinerea symptoms were significantly reduced after the application of the bacterial grass culture (G and GF) and FSf. In addition, root mortality in G and GF was lower compared to F. Tomato plants treated with G or GF had better vegetative growth and yield compared to F. Application of G affected the fungal and bacterial populations in the soil. In conclusion, treatment with a bacterial grass culture decreased disease severity and increased tomato growth parameters. However, there were no statistically significant correlations between disease occurrence and tomato yields. This experiment presents the possibility to manage diseases of tomato in an environmentally friendly manner and to also increase the yield of tomato by using a grass culture broth containing P. ehimensis KWN38.

Effects of Field-Grown Genetically Modified Zoysia Grass on Bacterial Community Structure

  • Lee, Yong-Eok;Yang, Sang-Hwan;Bae, Tae-Woong;Kang, Hong-Gyu;Lim, Pyung-Ok;Lee, Hyo-Yeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.4
    • /
    • pp.333-340
    • /
    • 2011
  • Herbicide-tolerant Zoysia grass has been previously developed through Agrobacterium-mediated transformation. We investigated the effects of genetically modified (GM) Zoysia grass and the associated herbicide application on bacterial community structure by using culture-independent approaches. To assess the possible horizontal gene transfer (HGT) of transgenic DNA to soil microorganisms, total soil DNAs were amplified by PCR with two primer sets for the bar and hpt genes, which were introduced into the GM Zoysia grass by a callus-type transformation. The transgenic genes were not detected from the total genomic DNAs extracted from 1.5 g of each rhizosphere soils of GM and non-GM Zoysia grasses. The structures and diversities of the bacterial communities in rhizosphere soils of GM and non-GM Zoysia grasses were investigated by constructing 16S rDNA clone libraries. Classifier, provided in the RDP II, assigned 100 clones in the 16S rRNA gene sequences library into 11 bacterial phyla. The most abundant phyla in both clone libraries were Acidobacteria and Proteobacteria. The bacterial diversity of the GM clone library was lower than that of the non- GM library. The former contained four phyla, whereas the latter had seven phyla. Phylogenetic trees were constructed to confirm these results. Phylogenetic analyses of the two clone libraries revealed considerable difference from each other. The significance of difference between clone libraries was examined with LIBSHUFF statistics. LIBSHUFF analysis revealed that the two clone libraries differed significantly (P<0.025), suggesting alterations in the composition of the microbial community associated with GM Zoysia grass.

Production of a Phytotoxic Compound, 3-Phenylpropionic Acid by a Bacterial Endophyte, Arthrobacter humicola YC6002 Isolated from the Root of Zoysia japonica

  • Chung, Eu-Jin;Park, Joo-Hwang;Park, Tae-Soon;Ahn, Jong-Woong;Chung, Young-Ryun
    • The Plant Pathology Journal
    • /
    • v.26 no.3
    • /
    • pp.245-252
    • /
    • 2010
  • An endophytic bacterial strain, Arthrobacter humicola YC6002, was isolated from a surface sterilized root of Korean turf grass (Zoysia japonica) collected from Jinju, Korea. This strain showed inhibitory effect on germination and shoot growth of radish. The inhibition of germination and shoot growth of radish seeds varied depending on the age of culture and the temperature at which it was incubated. The culture filtrate of 1/10-strength Tryptic Soy Broth medium, incubated for 48 hours at $30^{\circ}C$, showed the highest inhibitory effect on radish seed germination and shoot growth (92% inhibition as compared to control). The active compound with seed germination and shoot growth inhibition was purified and identified as 3-phenylpropionic acid. The purified compound had 53% and 93% inhibitory effect on seed germination and shoot growth of radish for 500 and 1000 ppm solutions, respectively.

Isolation and Identification of Antifungal Compounds from $Bacillus$ $subtilis$ C9 Inhibiting the Growth of Plant Pathogenic Fungi

  • Islam, Md. Rezuanul;Jeong, Yong-Tae;Lee, Yong-Se;Song, Chi-Hyun
    • Mycobiology
    • /
    • v.40 no.1
    • /
    • pp.59-65
    • /
    • 2012
  • Antagonistic microorganisms against $Rhizoctonia$ $solani$ were isolated and their antifungal activities were investigated. Two hundred sixteen bacterial isolates were isolated from various soil samples and 19 isolates were found to antagonize the selected plant pathogenic fungi with varying degrees. Among them, isolate C9 was selected as an antagonistic microorganism with potential for use in further studies. Treatment with the selected isolate C9 resulted in significantly reduced incidence of stem-segment colonization by $R.$ $solani$ AG2-2(IV) in Zoysia grass and enhanced growth of grass. Through its biochemical, physiological, and 16S rDNA characteristics, the selected bacterium was identified as $Bacillus$ $subtilis$ subsp. $subtilis$. Mannitol (1%) and soytone (1%) were found to be the best carbon and nitrogen sources, respectively, for use in antibiotic production. An antibiotic compound, designated as DG4, was separated and purified from ethyl acetate extract of the culture broth of isolate C9. On the basis of spectral data, including proton nuclear magneric resonance ($^1H$ NMR), carbon nuclear magneric resonance ($^{13}C$ NMR), and mass analyses, its chemical structure was established as a stereoisomer of acetylbutanediol. Application of the ethyl acetate extract of isolate C9 to several plant pathogens resulted in dose-dependent inhibition. Treatment with the purified compound (an isomer of acetylbuanediol) resulted in significantly inhibited growth of tested pathogens. The cell free culture supernatant of isolate C9 showed a chitinase effect on chitin medium. Results from the present study demonstrated the significant potential of the purified compound from isolate C9 for use as a biocontrol agent as well as a plant growth promoter with the ability to trigger induced systemic resistance of plants.

Adaptation of Feedlot Cattle to a High-energy Ration by Intraruminal Transplantation of Adapted Ruminal Fluid (제1위내용액 이식에 의한 비육우의 농후사료 적응법에 관한 연구)

  • 이현범;탁연빈;성은주;김기석;이영주;정재석;장종식;권오덕
    • Journal of Veterinary Clinics
    • /
    • v.15 no.1
    • /
    • pp.62-74
    • /
    • 1998
  • In feedlot cattle the abrupt change of diet from roughage to a large quantity of grain for the purpose to improve production often results in increased occurrence of rumen acidosis or acute carbohydrate encouragement enterotoxemia, bloats diarrhea liver abscess and laminitis or robot disease. The common management practice to control these problem is to increase the amount of concentrates in the diet in a stepwise manner until the animals are adapted to a high-grain ration. However this practice requires at least about 3 weeks adaptation period and specially prepared adaptation rations which contain various amount of concentrates. Present experiment was undertaken in order to findout the more simple and rapid adaptation method of cattle to a high grain ration. Nineteen Korean calves aging from four to six month were fed artifical hay (Youngchoun Chuk-Hyup, Korea) which contains 10% of concentrates or alfalfa and rye grass hays for two months and randomly alloted to three experimental groups and two control groups. The experimental group-1 was inoculated by stomach tube for two days with li500 ml/day of ruminal fluid fished from Korean beef cattle that had been previously adapted to a high-energy ration. The experimental group-2 was inoculated by trocalization for two days with the same ruminal fluid. The experimental group-3 was inoculated by trocalization with 1,500 ml/day of bacterial culture which contained 2$\times $10$^{9}$/m1 of Gram-negative bacteria derived from adapted luminal fluid. The two control groups were treated with normal saline solution by the same methods. All animals were fed high-energy ration that contained 80% of grain ad libitum for 30-74 days beginning on the third of the treatment. The effect of the inoculation on the adaptation was observed clinicopathologically with the following results; All of the experimental calves inoculated with the ruminal fluid or Gram-negative bacterial culture derived from adapted cattle did not show any signs of rumen acidosis or other related diseases, while most of the control calves did show diarrhea and bloat and a calf laminitis. The average daily weight gain and feed efficiency of experimental calves were slightly improved compared with control calves. Following the feeding of high-grain rational the pH of the ruminal fluid was lowered in both the experimental and control groups. However severe acidosis with the pH of below 5.0 was observed in only a control group-2. The protozoal number in ruminal fluid was markedly decreased during the high-grain feeding in both the experimental and control calves. However the decrease was mere severe in control calves compared with the experimental calves. The activation of the protozoa were completely disappeared within nine hours at the refrigerator temperature (4"C). No significant differences in heamatological and blood chemical values between the experimental and control calves were recognized. However in one control calf which showed clinically laminitis marked elevations of serum glutamic oxaloacetate transaminase and lactic dehydrogenase activities and a decrease of serum glucose level were observed. From these results it would be concluded the intraruminal transplantation of unadapted calves with the adapted ruminal fluid from cattle previously adapted to a high-energy ration prevents disease problem associated with high-grain feeding and improve weight gain and feed efficiency.ency.

  • PDF