• Title/Summary/Keyword: Bacterial expression system

Search Result 147, Processing Time 0.028 seconds

Bacterial ${\beta}$-Lactamase Fragment Complementation Strategy Can Be Used as a Method for Identifying Interacting Protein Pairs

  • Park, Jong-Hwa;Back, Jung-Ho;Hahm, Soo-Hyun;Shim, Hye-Young;Park, Min-Ju;Ko, Sung-Il;Han, Ye-Sun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.10
    • /
    • pp.1607-1615
    • /
    • 2007
  • We investigated the applicability of the TEM-l ${\beta}$-lactamase fragment complementation (BFC) system to develop a strategy for the screening of protein-protein interactions in bacteria. A BFC system containing a human Fas-associated death domain (hFADD) and human Fas death domain (hFasDD) was generated. The hFADD-hFasDD interaction was verified by cell survivability in ampicillin-containing medium and the colorimetric change of nitrocefin. It was also confirmed by His pull-down assay using cell lysates obtained in selection steps. A coiled-coil helix coiled-coil domain-containing protein 5 (CHCH5) was identified as an interacting protein of human uracil DNA glycosylase (hUNG) from the bacterial BFC cDNA library strategy. The interaction between hUNG and CHCH5 was further confirmed with immunoprecipitation using a mammalian expression system. CHCH5 enhanced the DNA glycosylase activity of hUNG to remove uracil from DNA duplexes containing a U/G mismatch pair. These results suggest that the bacterial BFC cDNA library strategy can be effectively used to identify interacting protein pairs.

Oxalate Decarboxylase from Agrobacterium tumefaciens C58 is Translocated by a Twin Arginine Translocation System

  • Shen, Yu-Hu;Liu, Rui-Juan;Wang, Hai-Qing
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.7
    • /
    • pp.1245-1251
    • /
    • 2008
  • Oxalate decarboxylases (OXDCs) (E.C. 4.1.1.2) are enzymes catalyzing the conversion of oxalate to formate and $CO_2$. The OXDCs found in fungi and bacteria belong to a functionally diverse protein superfamily known as the cupins. Fungi-originated OXDCs are secretory enzymes. However, most bacterial OXDCs are localized in the cytosol, and may be involved in energy metabolism. In Agrobacterium tumefaciens C58, a locus for a putative oxalate decarboxylase is present. In the study reported here, an enzyme was overexpressed in Escherichia coli and showed oxalate decarboxylase activity. Computational analysis revealed the A. tumefaciens C58 OXDC contains a signal peptide mediating translocation of the enzyme into the periplasm that was supported by expression of signal-peptideless and full-length versions of the enzyme in A. tumefaciens C58. Further site-directed mutagenesis experiment demonstrated that the A. tumefaciens C58 OXDC is most likely translocated by a twin-arginine translocation (TAT) system.

Cloning and protein expression of Aggregatibacter actinomycetemcomitans cytolethal distending toxin C

  • Lee, Eun-Sun;Park, So-Young;Lee, Eun-Suk;Kim, Hyung-Seop
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.sup2
    • /
    • pp.317-324
    • /
    • 2008
  • Purpose: Aggregatibacter actinomycetemcomitans was associated with localized aggressive periodontitis, endocarditis, meningitis, and osteomyelitis. The cytolethal distending toxin (CDT) of A. actinomycetemcomitans was considered as a key factor of these diseases is composed of five open reading frames (ORFs). Among of them, An enzymatic subunit of the CDT, CdtB has been known to be internalized into the host cell in order to induce its genotoxic effect. However, CdtB can not be localized in host cytoplasm without the help of a heterodimeric complex consisting of CdtA and CdtC. So, some studies suggested that CdtC functions as a ligand to interact with GM3 ganglioside of host cell surface. The precise role of the CdtC protein in the mechanism of action of the holotoxin is unknown at the present time. The aim of this study was to generate recombinant CdtC proteins expression from A. actinomycetemcomitans, through gene cloning and protein used to investigate the function of Cdt C protein in the bacterial pathogenesis. Materials and Methods: The genomic DNA of A. actinomycetemcomitans Y4 (ATCC29522) was isolated using the genomic DNA extraction kit and used as template to yield cdtC genes by PCR. The amplifed cdtC genes were cloned into T-vector and cloned cdt C gene was then subcloned to pET28a expression vector. The pET28a-cdtC plasmid expressed in BL21 (DE3) Escherichia coli system. Diverse conditons were tested to opitimize the expression and purification of functional CdtC protein in E. coli. Results: In this study we reconstructed CdtC subunit of A. actinomycetemcomitans Y4 and comfirmed the recombinant CdtC expression by SDS-PAGE and Western Blotting. The expression level of the recombinant CdtC was about 2% of total bacterial proteins. Conclusion: The lab condition of procedure for the purification of functionally active recombinant CdtC protein is established. The active recombinant CdtC protein will serve to examine the role of CdtC proteins in the host recognition and enzyme activity of CDT and investigate the pathological process of A. actinomycetemcomitans in periodontal disease.

Characterization of a Novel Fibrinolytic Enzyme, BsfA, from Bacillus subtilis ZA400 in Kimchi Reveals Its Pertinence to Thrombosis Treatment

  • Ahn, Min-Ju;Ku, Hye-Jin;Lee, Se-Hui;Lee, Ju-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.12
    • /
    • pp.2090-2099
    • /
    • 2015
  • Recently, the cardiovascular disease has been widely problematic in humans probably due to fibrin formation via the unbalanced Western style diet. Although direct (human plasmin) and indirect methods (plasminogen activators) have been available, bacterial enzyme methods have been studied because of their cheap and mass production. To detect a novel bacterial fibrinolytic enzyme, 111 bacterial strains with fibrinolytic activity were selected from kimchi. Among them, 14 strains were selected because of their stronger activity than 0.02 U of plasmin. Their 16S rRNA sequence analysis revealed that they belong to Bacillus, Leuconostoc, Propionibacterium, Weissella, Staphylococcus, and Bifidobacterium. The strain B. subtilis ZA400, with the highest fibrinolytic activity, was selected and the gene encoding fibrinolytic enzyme (bsfA) was cloned and expressed in the E. coli overexpression system. The purified enzyme was analyzed with SDS-PAGE, western blot, and MALDI-TOF analyses, showing to be 28.4 kDa. Subsequently, the BsfA was characterized to be stable under various stress conditions such as temperature (4-40oC), metal ions (Mn2+, Ca2+, K2+, and Mg2+), and inhibitors (EDTA and SDS), suggesting that BsfA could be a good candidate for development of a novel fibrinolytic enzyme for thrombosis treatment and may even be useful as a new bacterial starter for manufacturing functional fermented foods.

The Ralstonia pseudosolanacearum Type III Effector RipL Delays Flowering and Promotes Susceptibility to Pseudomonas syringae in Arabidopsis thaliana

  • Wanhui Kim;Hyelim Jeon;Hyeonjung Lee;Kee Hoon Sohn;Cecile Segonzac
    • Molecules and Cells
    • /
    • v.46 no.11
    • /
    • pp.710-724
    • /
    • 2023
  • The plant defense responses to microbial infection are tightly regulated and integrated with the developmental program for optimal resources allocation. Notably, the defense-associated hormone salicylic acid (SA) acts as a promoter of flowering while several plant pathogens actively target the flowering signaling pathway to promote their virulence or dissemination. Ralstonia pseudosolanacearum inject tens of effectors in the host cells that collectively promote bacterial proliferation in plant tissues. Here, we characterized the function of the broadly conserved R. pseudosolanacearum effector RipL, through heterologous expression in Arabidopsis thaliana. RipL-expressing transgenic lines presented a delayed flowering, which correlated with a low expression of flowering regulator genes. Delayed flowering was also observed in Nicotiana benthamiana plants transiently expressing RipL. In parallel, RipL promoted plant susceptibility to virulent strains of Pseudomonas syringae in the effector-expressing lines or when delivered by the type III secretion system. Unexpectedly, SA accumulation and SA-dependent immune signaling were not significantly affected by RipL expression. Rather, the RNA-seq analysis of infected RipL-expressing lines revealed that the overall amplitude of the transcriptional response was dampened, suggesting that RipL could promote plant susceptibility in an SA-independent manner. Further elucidation of the molecular mechanisms underpinning RipL effect on flowering and immunity may reveal novel effector functions in host cells.

Site-Specific Recombination by the Integrase MJ1 on Mammalian Cell (동물 세포 내에서 MJ1 인티그라제에 의한 부위 특이적 재조합)

  • Kim, Hye-Young;Yoon, Bo-Hyun;Chang, Hyo-Ihl
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.4
    • /
    • pp.337-344
    • /
    • 2011
  • Integrase MJ1 from the bacteriophage ${\Phi}FC1$ carries out recombination between two DNA sequences (the phage attachment site, attP and the bacterial attachment site, attB) in NIH3T3 mouse cells. In this study, the integration vector containing attP, attB and the integrase gene MJ, was constructed. The integration mediated by integrase MJ1 in Escherichia coli led to excision of LacZ. Therefore, the frequency of integration was measured by the counting of the white colony, which is detectable on X-Gal plates. The extrachromosomal integration in NIH3T3 mouse cells was monitored by the expression of the green fluorescent protein (GFP) as a reporter. To demonstrate integration mediated integrase MJ1 in NIH3T3 cells, vectors containing attP and attB were co-transfected into NIH3T3 cells. The integration was confirmed by fluorescent microscopy. The expression of GFP was induced in NIH3T3 cells expressing MJ1 without accessory factors. By contrast, the excision mediated by the MJ1 between attR and attL had no effect on the expression of GFP. These results suggest that integrase MJ1 may enable a variety of genomic modifications for research and therapeutic purposes in higher living cells.

Identification and Characterization of pH-Regulated Genes in Saccharomyces cerevisiae

  • Hong, Sung-Ki;Choi, Eui-Yul
    • Journal of Microbiology
    • /
    • v.34 no.4
    • /
    • pp.327-333
    • /
    • 1996
  • Yeast, like many other microbes, encounters large variations in ambient pH in their natural environments. Microorganisms capable of growing over a wide pH range require a versatile, efficient pH homeostatic mechanism protecting intracellular processes against extremes of pH. In several organisms, fusions to the bacterial lacZ gene have been extremely useful for the identification of genes expressed at different time during the life cycle or under different growth conditions. In this study, using the lacZ gene screening system, we surveyed a large number of yeast strains with lacZ insertion to identify genes regulated by pH. A yeast genomic library was constructed and inserted with lacZ by a shuttle mutagenesis procedure. The yeast transformants were individually picked up with a toothpick, replica-plated, and grown in alkaline pH medium. Among the 35,000 colonies screened, 10 candidate strains were identified initially by the $\beta$-gal assay. We finally confirmed two yeast strains carrying the genes whose expression are strictly dependent on pH of growth medium. One of the fusions showing a 10-fold induction in expression level in response to alkali pH was selected and further characterized. The pH-regulated gene was cloned by inverse PCR and a partial sequence of the gene was determined. Identification and characterization of the gene is currently under investigation.

  • PDF

Role of LuxIR Homologue AnoIR in Acinetobacter nosocomialis and the Effect of Virstatin on the Expression of anoR Gene

  • Oh, Man Hwan;Choi, Chul Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.8
    • /
    • pp.1390-1400
    • /
    • 2015
  • Quorum sensing is a process of cell-to-cell communication in which bacteria produce autoinducers as signaling molecules to sense cell density and coordinate gene expression. In the present study, a LuxI-type synthase, AnoI, and a LuxR-type regulator, AnoR, were identified in Acinetobacter nosocomialis, an important nosocomial pathogen, by sequence analysis of the bacterial genome. We found that N-(3-hydroxy-dodecanoyl)- L -homoserine lactone (OH-dDHL) is a quorum-sensing signal in A. nosocomialis. The anoI gene deletion was responsible for the impairment in the production of OH-dDHL. The expression of anoI was almost abolished in the anoR mutant. These results indicate that AnoI is essential for the production of OH-dDHL in A. nosocomialis, and its expression is positively regulated by AnoR. Moreover, the anoR mutant exhibited deficiency in biofilm formation. In particular, motility of the anoR mutant was consistently and significantly abolished compared with that of the wild type. The deficiency in the biofilm formation and motility of the anoR mutant was significantly restored by a functional anoR, indicating that AnoR plays important roles in the biofilm formation and motility. Furthermore, the present study showed that virstatin exerts its effects on the reduction of biofilm formation and motility by inhibiting the expression of anoR. Consequently, the combined results suggest that AnoIR is a quorum-sensing system that plays important roles in the biofilm formation and motility of A. nosocomialis, and virstatin is an inhibitor of the expression of anoR.

Dec2 inhibits macrophage pyroptosis to promote periodontal homeostasis

  • He, Dawei;Li, Xiaoyan;Zhang, Fengzhu;Wang, Chen;Liu, Yi;Bhawal, Ujjal K.;Sun, Jiang
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.1
    • /
    • pp.28-38
    • /
    • 2022
  • Purpose: Macrophages play crucial roles as early responders to bacterial pathogens and promote/ or impede chronic inflammation in various tissues. Periodontal macrophage-induced pyroptosis results in physiological and pathological inflammatory responses. The transcription factor Dec2 is involved in regulating immune function and inflammatory processes. To characterize the potential unknown role of Dec2 in the innate immune system, we sought to elucidate the mechanism that may alleviate macrophage pyroptosis in periodontal inflammation. Methods: Porphyromonas gingivalis lipopolysaccharide (LPS) was used to induce pyroptosis in RAW 264.7 macrophages. Subsequently, we established an LPS-stimulated Dec2 overexpression cellular model in macrophages. Human chronic periodontitis tissues were employed to evaluate potential changes in inflammatory marker expression and pyroptosis. Finally, the effects of Dec2 deficiency on inflammation and pyroptosis were characterized in a P. gingivalis-treated experimental periodontitis Dec2-knockout mouse model. Results: Macrophages treated with LPS revealed significantly increased messenger RNA expression levels of Dec2 and interleukin (IL)-1β. Dec2 overexpression reduced IL-1β expression in macrophages treated with LPS. Overexpression of Dec2 also repressed the cleavage of gasdermin D (GSDMD), and the expression of caspase-11 was concurrently reduced in macrophages treated with LPS. Human chronic periodontitis tissues showed significantly higher gingival inflammation and pyroptosis-related protein expression than non-periodontitis tissues. In vivo, P. gingivalis-challenged mice exhibited a significant augmentation of F4/80, tumor necrosis factor-α, and IL-1β. Dec2 deficiency markedly induced GSDMD expression in the periodontal ligament of P. gingivalis-challenged mice. Conclusions: Our findings indicate that Dec2 deficiency exacerbated P. gingivalis LPS-induced periodontal inflammation and GSDMD-mediated pyroptosis. Collectively, our results present novel insights into the molecular functions of macrophage pyroptosis and document an unforeseen role of Dec2 in pyroptosis.

Expression and Purification of Soybean Protein from Escherichia coli (콩 단백질의 대장균 발현과 정제)

  • 오문헌;정재홍;노영희;이희봉
    • The Korean Journal of Food And Nutrition
    • /
    • v.9 no.4
    • /
    • pp.404-408
    • /
    • 1996
  • One of the major objectives of the food industry is the enrichment of the functional properties and nutritional value of soybean protein. To attain this goal, an expression system of cDNA encoding native and protein-engineered soybean proteins in a microorganism must be developed and the function then ability of self-assembly and the functionalities of the expressed proteins should be evaluated before the modified genes are transfered to soybean plants. The pro-$\beta$-conglycinin synthesized in E. coli BL21(DE3) comprised approximately 20% of the total bacterial proteins and the expressed protein are formed soluble and trimer such as native protein in E. coli cells. The highly expressed protein was purified to homogeneity by salt precipitation with 20~40$ Ammonium sulfate ion-exchange chromatography with Q-Sepharose and hydrophobic column chromatography with Butyltoyopearl. Therefore, we concluded that the high-level expression system of $\beta$-conglycinin cDNA was established and a relatively simple and rapid method for purifying pro-$\beta$-conglicinin was also developed.

  • PDF