• Title/Summary/Keyword: Bacterial density

Search Result 323, Processing Time 0.026 seconds

Chemical signalling within the rumen microbiome

  • Katie Lawther;Fernanda Godoy Santos;Linda B Oyama;Sharon A Huws
    • Animal Bioscience
    • /
    • v.37 no.2_spc
    • /
    • pp.337-345
    • /
    • 2024
  • Ruminants possess a specialized four-compartment forestomach, consisting of the reticulum, rumen, omasum, and abomasum. The rumen, the primary fermentative chamber, harbours a dynamic ecosystem comprising bacteria, protozoa, fungi, archaea, and bacteriophages. These microorganisms engage in diverse ecological interactions within the rumen microbiome, primarily benefiting the host animal by deriving energy from plant material breakdown. These interactions encompass symbiosis, such as mutualism and commensalism, as well as parasitism, predation, and competition. These ecological interactions are dependent on many factors, including the production of diverse molecules, such as those involved in quorum sensing (QS). QS is a density-dependent signalling mechanism involving the release of autoinducer (AIs) compounds, when cell density increases AIs bind to receptors causing the altered expression of certain genes. These AIs are classified as mainly being N-acyl-homoserine lactones (AHL; commonly used by Gram-negative bacteria) or autoinducer-2 based systems (AI-2; used by Gram-positive and Gram-negative bacteria); although other less common AI systems exist. Most of our understanding of QS at a gene-level comes from pure culture in vitro studies using bacterial pathogens, with much being unknown on a commensal bacterial and ecosystem level, especially in the context of the rumen microbiome. A small number of studies have explored QS in the rumen using 'omic' technologies, revealing a prevalence of AI-2 QS systems among rumen bacteria. Nevertheless, the implications of these signalling systems on gene regulation, rumen ecology, and ruminant characteristics are largely uncharted territory. Metatranscriptome data tracking the colonization of perennial ryegrass by rumen microbes suggest that these chemicals may influence transitions in bacterial diversity during colonization. The likelihood of undiscovered chemicals within the rumen microbial arsenal is high, with the identified chemicals representing only the tip of the iceberg. A comprehensive grasp of rumen microbial chemical signalling is crucial for addressing the challenges of food security and climate targets.

Identification and Ecological Characteristics of Bacterial Blossom Blight Pathogen of Kiwifruit (참다래 꽃썩음병균의 동정 및 발생생태)

  • Shin, Jong-Sup;Park, Jong-Kyu;Kim, Gyoung-Hee;Park, Jae-Young;Han, Hyo-Shim;Jung, Jae-Sung;Hur, Jae-Seoun;Koh, Young-Jin
    • Research in Plant Disease
    • /
    • v.10 no.4
    • /
    • pp.290-296
    • /
    • 2004
  • Bacterial blossom blight is one of the most important diseases of kiwifruit (Actinidia deliciosa). The disease occurs during flowering in the late May and disease outbreaks associated with rainfall during the flowering season have resulted in a severe reduction in kiwifruit production. The causal organism isolated from diseased blossoms of kiwifruits was identified as Pseudomonas syringae pv, syringae based on the physiological and biochemical characteristics and pathogenicity test. Dead fruit stalks, dead pruned twigs, fallen leaves and soils mainly provided R syringae pv. syringae with overwintering places in the kiwifruit orchards, and the inocula also overwintered on buds, trunks, branches, and twigs on the kiwifruit trees. Among the overwintering places, the incula were detected in the highest frequencies from dead fruit stalks. The population density of P. syringae pv. syringae was speculated to be over $1{\times}10^4$cfu/ml for the bacterial infection, and the optimum temperature for the bacterial growth ranged 20 to $25^{\circ}C$. The highest population density of P. syringae pv. syringae on the overwintering places was detected in May and June when the daily average temperature coincided with the optimum temperature for bacterial growth of P. syringae pv. syringae.

The Destruction of Bacterial Spores Upon Compressional Pressure (타정 압력에 의한 세균포자의 파괴현상)

  • Lee, Cherl-Ho;Kim, Young-Man;Lee, Jung-Chi;Jung, Pil-Keun
    • Korean Journal of Food Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.272-277
    • /
    • 1980
  • The tolerance of useful bacterial spores to the conditions of tablet making, specifically, the destruction of bacterial spores upon compressional pressure was investigated. The damage of bacterial spores occurred mainly during the tabletting. The bacterial spores obeyed a logarithmic destruction rate upon compressional pressure. The spore destruction rate was dependent upon the strains of microorganism. The Decimal Reduction Pressure, designated as P-value, were $2.9\;ton/cm^2$, $2.6\;ton/cm^2$ and $2.1\;ton/cm^2$ for the spores of Bacillus subtilis, Bacilus coagulans and Clostridium butyricum, respectively, and $1.7\;ton/cm^2$ for the vegetative cell of Streptococcus faecalis. The spore destruction upon compressional pressure was influenced by the type of filler. The P-value of the spore of B. coagulans was $2.8\;ton/cm^2$ in the lactose filler, but $2.0\;ton/cm^2$ in the starch filler. The number of viable spores was inversely proportional to the hardness and density of tablet, in case that the same type of filler was used. The starch filler, which resulted in the lower hardness and lower density of tablet, caused higher spore destruction rate compared with the lactose filler.

  • PDF

Modeling Bacteria Facilitated Contaminant Transport in Porous Media with Equilibrium Adsorption Relationships (평형 모델을 이용한 다공매질에서의 유동 세균에 의한 유기성 오염물의 가속이송)

  • 신항식;김승현
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.2 no.1
    • /
    • pp.14-21
    • /
    • 1995
  • Colloids such as exogenous biocolloids in a bioremediation operation can enhance the transport of contaminant in ground water by reducing retardation effects. Because of their colloidal size and favorable surface conditions in addition to their low density, bacteria can act as efficient contaminant carriers. When mobile bacteria are present in a subsurface environment, the system can be treated as consisting of three phases: water phase, bacterial phase, and the stationary solid matrix phase. In this work, a mathematical model based on mass balances is developed to describe the facilitated transport and fate of a contaminant in a porous medium. Bacterial partition between the bulk solution and the stationary solid matrix, and the contaminant partition among the three phases are represented by the equilibrium relationships. Solutions were obtained to provide estimates of contaminant and bacterial concentrations. A dimensionless analysis of the transport model was utilized to estimate model parameters from the experimental data. The model results matched with experimental data of Jenkins and Lion (1993). The presence of mobile bacteria enhances the contaminant transport. However, bacterial consumption of the contaminant which serves as a bacterial nutrient, can attenuate the contaminant concentration.

  • PDF

ENHANCED BIOREMEDIATION AND MODIFIED BACTERIAL COMMUNITY STRUCTURE BY BARNYARD GRASS IN DIESEL-CONTAMINATED SOIL

  • Kim, Jai-Soo;Min, Kyung-Ah;Cho, Kyung-Suk;Lee, In-Sook
    • Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.37-45
    • /
    • 2007
  • Phytoremediation has been used effectively for the biodegradation of oil-based contaminants, including diesel, by the stimulation of soil microbes near plant roots (rhizosphere). However, the technique has rarely been assessed for itsinfluence on soil microbial properties such as population, community structure, and diversity. In this study, the removal efficiency and characteristics of rhizobacteria for phytoremediation of diesel-contaminated soils were assessed using barnyard grass (Echinochloa crusgalli). The concentration of spiked diesel for treatments was around $6000\;mg\;kg^{-1}$. Diesel removal efficiencies reached 100% in rhizosphere soils, 76% in planted bulk soils, and 62% in unplanted bulk soils after 3weeks stabilization and 2 months growth(control, no microbial activity: 32%). The highest populations of culturable soil bacteria ($5.89{\times}10^8$ per g soil) and culturable hydrocarbon-degraders($5.65{\times}10^6$ per g soil) were found in diesel-contaminated rhizosphere soil, also yielding the highest microbial dehydrogenase. This suggests that the populations of soil bacteria, including hydrocarbon-degraders, were significantly increased by a synergistic rhizosphere + diesel effect. The diesel treatment alone resulted in negative population growth. In addition, we investigated the bacterial community structures of each soil sample based on DGGE (Denaturing Gel Gradient Electrophoresis) band patterns. Bacterial community structure was most influenced by the presence of diesel contamination (76.92% dissimilarity to the control) and by a diesel + rhizosphere treatment (65.62% dissimilarity), and least influenced by the rhizosphere treatment alone (48.15% dissimilarity). Based on the number of distinct DGGE bands, the bacterial diversity decreased with diesel treatment, but kept constant in the rhizosphere treatment. The rhizosphere thus positively influenced bacterial population density in diesel-contaminated soil, resulting in high removal efficiency of diesel.

Effect of Bacterial Cellulose Addition on the Property of Chemithermomechanical Pulp Sheet (박테리아 셀룰로오스의 첨가가 화학열기계펄프의 종이물성에 미치는 영향)

  • 조남석;최태호;서원성
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.30 no.4
    • /
    • pp.42-48
    • /
    • 1998
  • The bacterial cellulose(BC) has many unique properties that are potentially and commercially beneficial. In order to enhance inherently inferior physical property of chemithermomechanical pulp(CTMP) sheet, chemical pulp has been used widely. Bacterial cellulose also has an enhanced sheet strength because of its unique physical and morphological features. This study was carried out to inverstigate the effect of BC addition on physical properties of CTMP sheets. The effect of BC addition on its optical properties was also discussed. The apparent density, internal bond strength, Young's modulus, tensile strength and folding endurance of CTMP sheet are increasing with increase of BC contents. This strength increase would be attributed to the increase of relative bonding sites among pulp fibers by addition of BC which has microfibrillar structure with very high specific surface areas. There were not so significant changes in opacity of CTMP sheet upto 20% addition level of BC, while over 40% addition, the opacity gradually decreased and levelled off. Porosity is decreased with addition of BC. This decrease would be attributed to densification of sheet by fine and filamentous structure of BC fibers.

  • PDF

The Role of AiiA, a Quorum-Quenching Enzyme from Bacillus thuringiensis, on the Rhizosphere Competence

  • Park, Su-Jin;Park, Sun-Yang;Ryu, Choong-Min;Park, Seung-Hwan;Lee, Jung-Kee
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.9
    • /
    • pp.1518-1521
    • /
    • 2008
  • Bacteria sense their population density and coordinate the expression of target genes, including virulence factors in Gram-negative bacteria, by the N-acylhomoserine lactones (AHLs)-dependent quorum sensing (QS) mechanism. In contrast, several soil bacteria are able to interfere with QS by enzymatic degradation of AHLs, referred to as quorum quenching. A potent AHL-degrading enzyme, AiiA, from Bacillus thuringiensis has been reported to effectively attenuate the virulence of bacteria by quorum quenching. However, little is known about the role of AiiA in B. thuringiensis itself. In the present study, an aiiA-defective mutant was generated to investigate the role of AHA in rhizosphere competence in the root system of pepper. The aiiA mutant showed no detectable AHL¬-egrading activity and was less effective for suppression of soft-rot symptom caused by Erwinia carotovora on the potato slice. On the pepper root, the survival rate of the aiiA mutant significantly decreased over time compared with that of wild type. Interestingly, viable cell count analysis revealed that the bacterial number and composition of E. carotovora were not different between treatments of wild type and the aiiA mutant. These results provide evidence that AHA can play an important role in rhizosphere competentce of B. thuringiensis and bacterial quorum quenching to Gram-negative bacteria without changing bacterial number or composition.

Antibacterial Activity of Chitosan against Staphylococcus aureus -The Effect of Watersolubility, Degree of Deacetylation and Molecular Weight of Chitosan on Antibacterial Activity- (포도상구균(Staphylococcus aureus)에 대한 키토산의 항균성 -키토산의 수용성, 탈아세틸화도 및 분자량이 항균성에 미치는 효과-)

  • 한영숙;전동원
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.6
    • /
    • pp.807-818
    • /
    • 2004
  • The antibacterial activities of several types of chitosan were measured against Staphylococcus aureus and evaluated for their application to antibacterial textile finishing. The % reduction of bacteria of the chitosans prepared in our laboratory were between 72 and 87%. The two water-soluble chitosans with molecular weights 1,000 and 3,000 did not show antibacterial activities. The deacetylation of chitosan was appeared to increase antibacterial activity. The % reduction in bacterial density of the 86%-deacetylated chitosan solution was 56% where that of the 76%-deacetylated chitosan solution was only 17% at 0.1% chitosan concentration. Molecular weights of the chitosans seemed not to affect antibacterial activities of chitosans. The antibacterial activity of the acid-soluble, 86%-deacetylated chitosan with 4 cps showed 98% of the % reduction at the level of 0.2% chitosan. The % reduction of bacteria of this chitosan was higher at the higher concentration of acetic acid in the chitosan-bacterial mixture. The antibacterial activity was increased with the pH change over the range of 4.0 to 6.5. The 100% of the % reduction of bacteria was achieved within 4 hour incubation of the chitosan-bacterial mixture. According to the data obtained from the above experiments, the four chitosans among the six prepared in our laboratory were proved to be valuable for antibacterial textile finishing.

Implications of Fullerene-60 upon in-vitro LDPE Biodegradation

  • Sah, Aditi;Kapri, Anil;Zaidi, M.G.H.;Negi, Harshita;Goel, Reeta
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.5
    • /
    • pp.908-916
    • /
    • 2010
  • Fullerene-60 nanoparticles were used for studying their effect on the low-density polyethylene (LDPE) biodegradation efficiency of two potential polymer-degrading consortia comprising three bacterial strains each. At a concentration of 0.01% (w/v) in minimal broth lacking dextrose, fullerene did not have any negative influence upon the consortia growth. However, fullerene was found to be detrimental for bacterial growth at higher concentrations (viz., 0.25%, 0.5%, and 1%). Although addition of 0.01% fullerene into the biodegradation assays containing 5mg/ml LDPE subsided growth curves significantly, subsequent analysis of the degraded products revealed an enhanced biodegradation. Fourier transform infrared spectroscopy (FT-IR) revealed breakage and formation of chemical bonds along with the introduction of ${\nu}C$-O frequencies into the hydrocarbon backbone of LDPE. Moreover, simultaneous thermogravimetric-differential thermogravimetry-differential thermal analysis (TG-DTG-DTA) revealed a higher number of decomposition steps along with a 1,000-fold decrease in the heat of reactions (${\Delta}H$) in fullerene-assisted biodegraded LDPE, suggesting the probable formation of multiple macromolecular byproducts. This is the first report whereby fullerene-60, which is otherwise considered toxic, has helped to accelerate the polymer biodegradation process of bacterial consortia.

Effect of pH Buffer and Carbon Metabolism on the Yield and Mechanical Properties of Bacterial Cellulose Produced by Komagataeibacter hansenii ATCC 53582

  • Li, Zhaofeng;Chen, Si-Qian;Cao, Xiao;Li, Lin;Zhu, Jie;Yu, Hongpeng
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.3
    • /
    • pp.429-438
    • /
    • 2021
  • Bacterial cellulose (BC) is widely used in the food industry for products such as nata de coco. The mechanical properties of BC hydrogels, including stiffness and viscoelasticity, are determined by the hydrated fibril network. Generally, Komagataeibacter bacteria produce gluconic acids in a glucose medium, which may affect the pH, structure and mechanical properties of BC. In this work, the effect of pH buffer on the yields of Komagataeibacter hansenii strain ATCC 53582 was studied. The bacterium in a phosphate and phthalate buffer with low ionic strength produced a good BC yield (5.16 and 4.63 g/l respectively), but there was a substantial reduction in pH due to the accumulation of gluconic acid. However, the addition of gluconic acid enhanced the polymer density and mechanical properties of BC hydrogels. The effect was similar to that of the bacteria using glycerol in another carbon metabolism circuit, which provided good pH stability and a higher conversion rate of carbon. This study may broaden the understanding of how carbon sources affect BC biosynthesis.