• Title/Summary/Keyword: Bacterial Production

Search Result 1,588, Processing Time 0.03 seconds

Identification and Fermentation Characteristics of Lactic Acid Bacteria Isolated from Hahyangju Nuruk (하향주 누룩으로부터 분리한 젖산균의 동정 및 발효 특성)

  • Park, Chi-Duck;Jung, Hee-Kyoung;Park, Hwan-Hee;Hong, Joo-Heon
    • Food Science and Preservation
    • /
    • v.14 no.2
    • /
    • pp.188-193
    • /
    • 2007
  • The purpose of this study was to isolate lactic acid bacteria, useful in the fermentation industry from Hahyangju Nuruk. Five strains were isolated, and identified as Lactobacillus based on growth inhibition by 10% (v/v) alcohol at pH 4.0. Isolated strains were identified to species, and named Lactobacillus plantarum L-3, L. sakei L-10, and L. curvatus strains L-8, L-11, and L-12. Morphological characteristics, physiological data, carbohydrate fermentation patterns, and 16S rRNA sequence data, were all used to characterize the bacterial isolates. L. plantarum L-3 showed the highest lactic acid productivity of all isolates, but grew only poony in the presence of 10% (v/v) alcohol at pH 4.0. The other strains exhibited lower lactic acid productivity than did L. plantarum L-3 and did not grow in the presence of 10% (v/v) alcohol at pH 4.0. The optimal temperature and pH for lactic acid production were $30^{\circ}C$ and pH 6.0 7.0, respectively. The lactic acid productivity of L. plantarum L-3, L. sakei L-10 and the three L. curvatus strains L-8, L-11, and L-12 were (% v/v of culture supematant) 1.55, 1.0, 1.06, 1.0, and 0.99, respectively, at $30^{\circ}C$ and pH 6.0. While L. plantarum L-3 suffered growth inhibition in the presence of 10% (v/v) alcohol, growth of the other strains was inhibited at 8% (v/v) alcohol.

Potential of Fucoidan Extracted from Seaweeds as an Adjuvant for Fish Vaccine (해조류 유래 Fucoidan의 어류용 백신 항원보조제로서의 가능성에 대한 고찰)

  • Min, Eun Young;Kim, Kwang Il;Cho, Mi Young;Jung, Sung-Hee;Han, Hyun-Ja
    • Journal of Marine Life Science
    • /
    • v.4 no.1
    • /
    • pp.1-13
    • /
    • 2019
  • Fucoidan is a physiologically functional ingredient extracted from seaweed brown algae, which is a sulfated polysaccharide containing fucose as a main molecule backbone. Fucoidan has a variety of immune-modulating or -stimulating effects, including promoting antigen uptake and enhancing anti-bacterial, anti-viral and anti-tumor effects. In addition, recent studies have suggested the possibility of use of fucoidan as a vaccine adjuvant in the field of human vaccine. Use of fucoidan as supplementary feeds have already been studied, but the development of fucoidan as an adjuvant of fish vaccine is still premature. However, the intracellular uptake of fucoidan differs depending on the molecular weight of fucoidan, and there is a limit to the study on specific immune response including the production of antibodies to fish caused by an artificial infection of pathogen. Although the safety of fucoidan has been demonstrated in animal cells, there is a need to confirm the safety of fucoidan in fish. Therefore, active research in this field is needed to use fucoidan as a vaccine adjuvant. This study discussed the effects of fucoidan on immune stimulation, humoraland cellular- immunity including humans and animals. The prospect of fucoidan as a vaccine adjuvant in fisheries also reviewed.

Effects of Lactic Acid Bacteria Inoculants on Fermentation of Low Moisture Fresh Rice Straw Silage at Different Storage Periods

  • Kuppusamy, Palaniselvam;Soundharrajan, Ilavenil;Park, Hyung Soo;Kim, Ji Hea;Kim, Won Ho;Jung, Jeong Sung;Choi, Ki Choon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.39 no.3
    • /
    • pp.165-170
    • /
    • 2019
  • The purpose of this study was to analyze the effectiveness of different storage periods of lactic acid bacteria (LAB)-fermented low moisture fresh rice straw silage. The low moisture fresh rice straw sample was inculcated with LAB and stored for different storage periods such as 45, 90, and 365 days, respectively. The low moisture fresh rice straw (LMFRS) silage inoculated with LAB exhibited reduction in pH throughout the fermentation as compared with the control (P<0.05). The lactic acid content was increased at the late fermentation period (90 and 365 days, respectively) in LAB inoculated LMFRS silage as compared with the control (P<0.05). In contrast, the acetic acid and butyric acid concentrations were slightly reduced in the LAB inoculated LMFRS silage sample at 90 and 365 days fermentation, respectively. Meanwhile, the non-inoculated LMFRS silage showed higher amounts of acetic acid and butyric acid at an extended fermentation with low bacterial population as compared with the LAB inoculated LMFRS silage. However, lactic acid concentration was slightly high in the non-inoculated LMFRS silage at early 45 days fermentation. Additionally, the nutrient profile such as crude protein (CP), acid detergent fibre (ADF), neutral detergent fibre (NDF), and total digestibility nutrients (TDN) were not significantly different in control and LAB inculcated samples during all fermentation. Though, the microbial population was greater in the LAB inoculated LMFRS silage as compared with the control. However, the massive population was noted in the LAB inoculated LMFRS silage during all fermentation. It indicates that the inoculated LAB is the main reason for increasing fermentation quality in the sample through pH reduction by organic acids production. Overall results suggest that the LAB inoculums are the effective strain that could be a suitable for LMFRS silage fermentation at prolonged days.

Suppressive effect of Senecio iscoensis Hieron. extract in Propionibacterium acnes-induced inflammatory signaling pathway (Senecio iscoensis Hieron. 추출물의 Propionibacterium acnes에 의한 염증반응 억제효과)

  • Shin, Jin Hak;Lee, Eun Hye;Kim, Seon Sook;Yi, Dong-Keun;Roh, Jin Kyung;Seo, Su Ryeon
    • Korean Journal of Microbiology
    • /
    • v.55 no.3
    • /
    • pp.206-212
    • /
    • 2019
  • Propionibacterium acnes (P. acnes) lives in the hair follicles and pores, and it uses cell debris, sebum and metabolic byproducts of surrounding skin tissues as energy and nutrients. Increased production of sebum due to sebaceous hyperplasia or blockage of the follicle can cause growth and proliferation of P. acnes. The rapid growth of P. acnes in follicles produces cell damage, metabolic byproducts and bacterial chips, which can cause inflammation. In this study, we examined the possibility of Senecio iscoensis Hieron. (S. iscoensis) extract to regulate P. acnes-induced inflammatory signaling pathways. We observed that S. iscoensis extract effectively inhibited P. acnes-induced pro-inflammatory cytokine expressions such as IL-$1{\beta}$, TNF-${\alpha}$, and iNOS in mouse macrophage cell line Raw 264.7. The inhibitory effect of S. iscoensis in pro-inflammatory cytokine levels was accompanied by the inhibition of the transcription factors NF-${\kappa}B$ and NF-AT. However, S. iscoensis did not alter the P. acnes-induced MAPK signaling pathways. This study first suggests the potential of using S. iscoensis extract as an alternative agent for the treatment of acne.

Some Properties and Microbial Community Changes of Gul (Oyster) Jeotgal during Fermentation

  • Kim, Jeong A;Yao, Zhuang;Kim, Hyun-Jin;Kim, Jeong Hwan
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.3
    • /
    • pp.343-349
    • /
    • 2019
  • Gul jeotgals (GJs) were prepared using solar salt aged for 3 years. One sample was fermented using starters, such as Bacillus subtilis JS2 and Tetragenococcus halophilus BS2-36 (each $10^6CFU/g$), and another sample was fermented without starters for 49 days at $10^{\circ}C$. Initial counts of bacilli and lactic acid bacteria (LAB) in non-starter GJ were found to be $3.20{\times}10^2$ and $7.67{\times}10^1CFU/g$ on day 0, and increased to $1.37{\times}10^3$ and $1.64{\times}10^6CFU/g$ on day 49. Those of starter GJ were found to be $2.10{\times}10^5$ and $3.30{\times}10^7CFU/g$ on day 49, indicating the growth of starters. The pH values of GJ were $5.93{\pm}0.01$ (non-starter) and $5.92{\pm}0.01$ (starter) on day 0 and decreased to $5.78{\pm}0.01$ (non-starter) and $5.75{\pm}0.01$ (starter) on day 49. Amino-type nitrogen (ANN) production increased continuously during fermentation, and $407.19{\pm}15.85$ (non-starter) and $398.04{\pm}13.73$ (starter) mg% on day 49. Clone libraries of 16S rRNA genes were constructed from total DNA extracted from non-starter GJ on days 7, 21, and 42. Nucleotide sequences of Escherichia coli transformants harboring recombinant pGEM-T easy plasmid containing 16S rRNA gene inserts from different bacterial species were analyzed using BLAST. Uncultured bacterium was the most dominant group and Gram - bacteria such as Acidovorax sp., Afipia sp., and Variovorax sp. were the second dominant group. Bacillus amyloliquefaciens (day 7), Bacillus velezensis (day 21 and 42), and Bacillus subtilis (day 42) were observed, but no lactic acid bacteria were detected. Acidovorax and Variovorax species might play some role in GJ fermentation. Further studies on these bacteria are necessary.

Effect of Evodiae fructus Methanol Extract on Virulence-Related Genes' Expression of Helicobacter pylori (오수유 메탄올 추출물이 Helicobacter pylori 병원성 관련 유전자 발현에 미치는 영향)

  • Yang, Ji Yeong;Lee, Pyeongjae;Kim, Jong-Bae
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.3
    • /
    • pp.316-322
    • /
    • 2019
  • Helicobacter pylori, a gram-negative bacterium, is one of the risk factors that induces gastritis and gastric cancer. Therefore, much attention has been paid to the compounds that inhibit bacterial growth or eradicate bacteria. Evodiae fructus (EF), the fruit of Evodia rutaecarpa, has been used for treating diarrhea and abdominal pain. EF extract was already found to inhibit the growth of H. pylori. However, to the best of our knowledge, the effect of EF on the virulence factors of H. pylori has not been reported. In this study, when comparing the minimum inhibitory concentration (MIC) of the different methanol concentration extracts, the 95% methanol extract (EF95) showed the lowest MIC value. EF95 extract suppressed the expressions of cagA, vacA and ureB, but interestingly, it up-regulated the expression of ureA. A decrease in production of ammonia in the culture medium and the cell lysates indicated that EF95 inhibited the urease activity in H. pylori, which was the result of EF95 inhibiting the ureB expression. Although the mechanism by which EF95 extract regulates the virulence factors in H. pylori needs further study, EF95 could be used for treatment of gastric troubles induced by H. pylori.

Substitution effects of enzymatically saccharified Korean rice wine lees powder on skim milk in yogurt fermentation (요구르트 발효에서 효소로 당화시킨 주박 분해물의 탈지분유 대체 효과)

  • In, Man-Jin
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.3
    • /
    • pp.299-304
    • /
    • 2019
  • Yogurt was prepared with different substitution ratio [10, 20, 30, and 50% (w/w)] of skim milk with enzymatically saccharified Korean rice wine lees powder (eKRWLP) and fermented with commercially available mixed lactic acid bacteria (Bifidobacterium longum, Lactobacillus acidophilus, Streptococcus thermophilus) at $40^{\circ}C$ for 18 h. Fermentation characteristics were evaluated in terms of acid production (pH and titratable acidity) and viable cell counts of lactic acid bacteria. The pH of yogurts decreased with increasing eKRWLP substitution ratio of skim milk. After 12 h fermentation, titratable acidities of eKRWLP substitution and control (yogurt made without eKRWLP) were 0.84~1.04% and 0.93%, respectively. The titratable acidities of yogurts prepared with 10 and 20% substitution ratio increased than that of the control yogurt, but titratable acidities of yogurts of 30 and 50% substitution ratio decreased. After 9 h fermentation, the number of viable lactic acid bacterial cell were increased to 8.18~8.24 log CFU/g in all yogurts. In sensory evaluation, there were similar preference for eKRWLP yogurts prepared with 10 and 20% substitution ratio and the control. When eKRWLP substitution and control yogurts fermented for 9 h were incubated at $4^{\circ}C$, their pHs and titratable acidities were slightly changed but the number of viable lactic acid bacteria were well maintained above $10^7CFU/g$ for 11 days in yogurts prepared with 10 and 20% substitution ratio among eKRWLP substitution yogurts. These results suggest that eKRWLP can be used as substituent of skim milk and the optimum substitution ratio is around 10~20%.

Antimicrobial activities of Bacillus subtilis DS660 and Paenibacillus polymyxa DS842 (Bacillus subtilis DS660과 Paenibacillus polymyxa DS842의 항균활성)

  • Lee, Da-Sol;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.54 no.4
    • /
    • pp.354-361
    • /
    • 2018
  • This study was carried out to isolate soil bacteria with antimicrobial activity and evaluate antimicrobial substances produced by isolated bacteria. Among many isolates Bacillus subtilis DS660 and Paenibacillus polymyxa DS842 showed high antimicrobial activities against 6 species of microbial residents on human skin and 3 species of pathogenic bacteria. DS660 and DS842 showed 15.3~26.8 and 11.3~27.5 mm of inhibition zone diameter, respectively on nutrient agar medium against most target bacteria and fungi. DS660 and DS842 produced $57{\pm}8$ and $170{\pm}15{\mu}mol/ml$ of siderophore, respectively as an antimicrobial substance. Analysis of ethyl acetate extract of culture supernatants of DS660 and DS842 suggested production of glycolipid biosurfactant which reduced surface tension of culture supernatant of DS660 and DS842 from 60.0 to 40.3 and 30.3 mN/m, respectively. DS660 and DS842 also showed $169.2{\pm}9.9$ and $357.2{\pm}13.7nmol/min/mg$ protein of ${\beta}-1,3$-glucanase activity, respectively, and hydrolyzed cell wall components of 3 bacterial species. These results suggest that B. subtilis DS660 and P. polymyxa DS842 may be utilized as an environment-friendly biocontrol agent against some skin microbes and pathogenic bacteria.

Inactivation of Pathogenic Escherichia coli Using Crude Extract of Immunized Silkworm (면역유도누에 추출물을 이용한 병원성 대장균의 불활성화)

  • Park, Jong Woo;Jeong, Chan Young;Lee, Chang Hoon;Kang, Sang Kuk;Ju, Wan-Taek;Kim, Seong-Wan;Kim, Nam-Suk;Kim, Kee Young
    • Journal of Life Science
    • /
    • v.31 no.8
    • /
    • pp.755-760
    • /
    • 2021
  • Swine diarrhea is a livestock disease that causes huge economic losses to pig farms. In general, diarrhea occurs because of the proliferation of pathogenic Escherichia coli (E. coli). The toxins produced by the proliferated E. coli cause edema in pigs. Although the proliferation of these coliforms can be prevented by using a vaccine, the vaccines containing chemically produced dead bacteria are not very effective, making it difficult to control the proliferation of E. coli. Therefore, there is a need to develop new, more effective vaccines. In this study, we prepared killed F4+ and F18ab+ E. coli, which induce diarrhea and edema in pigs, using the extracts of immune-induced silkworms containing antimicrobial peptides and examined their availability as a killed-bacteria vaccine. First, the antimicrobial activity analysis of the prepared immune-induced silkworm extract was conducted using the radial diffusion assay. The results showed high activity against both F4+ and F18ab+ E. coli. The production efficiency of E. coli dead cells was determined using the colony-counting method. The concentration of the E. coli dead cells was the highest (50 mg/ml) when treated at 4℃. In addition, the analysis of the prepared dead cells using a transmission electron microscope confirmed that E. coli leaked out of the cytoplasm and the cell membrane remained intact. Therefore, F4+ and F18ab+ E. coli produced using immune-induced silkworms extract are considered to be highly available as bacterial ghost vaccines that can help prevent swine diarrhea and the resulting edema.

Biocontrol of Rice Diseases by Microorganisms (미생물을 활용한 친환경적인 벼 병해 방제법)

  • Kim, Jung-Ae;Song, Jeong-Sup;Jeong, Min-Hye;Park, Sook-Young;Kim, Yangseon
    • Research in Plant Disease
    • /
    • v.27 no.4
    • /
    • pp.129-136
    • /
    • 2021
  • Rice is responsible for the stable crop of 3 billion people worldwide, about half of Asian depends on it, and rice is grown in more than 100 countries. Rice diseases can lead to devastating economic loss by decreasing yield production, disturbing a stable food supply and demand chain. The most commonly used method to control rice disease is chemical control. However, misuse of chemical control can cause environmental pollution, residual toxicity, and the emergence of chemical-resistant pathogens, the deterioration of soil quality, and the destruction of biodiversity. In order to control rice diseases, research on alternative biocontrol is actively pursued including microorganism-oriented biocontrol agents. Microbial agents control plant disease through competition with and antibiotic effects and parasitism against plant pathogens. Microorganisms isolated from the rice rhizosphere are studied comprehensively as biocontrol agents against rice pathogens. Bacillus sp., Pseudomonas sp., and Trichoderma sp. were reported to control rice diseases, such as blast, sheath blight, bacterial leaf blight, brown spot, and bakanae diseases. Here we reviewed the microorganisms that are studied as biocontrol agents against rice diseases.