• Title/Summary/Keyword: Bacteria, Anaerobic

Search Result 585, Processing Time 0.028 seconds

Effect of Heme-rich Nutrient on Anaerobic Bacterial Growth and Survival: A Model Study on Lactobacillus gasseri (헴철이 풍부한 영양원이 혐기성 세균의 생장과 생존에 미치는 영향: 락토바실러스 가세리 모델연구)

  • Lee, Seungki;Kim, Pil
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.1
    • /
    • pp.57-64
    • /
    • 2021
  • Lactic acid bacteria (LAB), belonging to the Firmicutes phylum, lack heme biosynthesis and, thus, are characterized as fermentative and catalase-negative organisms. To verify the hypothesis that heme-rich-nutrients might compensate the heme-biosynthesis incapability of non-respiratory LAB in animal gut, a heme-rich-nutrient was fed to a dog and its fecal microbiome was analyzed. Firmicutes abundance in the feces from the heme-rich-nutrient-fed dog was 99%, compared to 92% in the control dog. To clarify the reason of increased Firmicutes abundance in the feces from the heme-rich-nutrient-fed dog, Lacobacillus gasseri were used as model anerobic LAB to study a purified heme (hemin). The anaerobic growth of L. gasseri in the medium with 25 µM hemin supplementation was faster than that in the medium without hemin, while the growth in the 50 µM hemin-supplemented medium did not vary. Cellular activities of the cytochrome bd complex were 1.55 ± 0.19, 2.11 ± 0.14, and 2.20 ± 0.08 U/gcell in the cells from 0, 25, and 50 µM hemin-supplemented medium, while intracellular ATP concentrations were 7.90 ± 1.12, 11.95 ± 0.68, and 12.56 ± 0.58 µmolATP/gcell, respectively. The ROS-scavenging activities of the L. gasseri cytosol from 25 µM and 50 µM hemin-supplemented medium were 68% and 82% greater than those of the cytosol from no hemin supplemented-medium, respectively. These findings indicate that external hemin could compensate the heme-biosynthesis incapability of L. gasseri by increasing the cytosolic ROS-scavenging and extra ATP generation, possibly through increasing the electron transfer. Increase in the number of anaerobic bacteria in heme-rich-nutrient-fed animal gut is discussed based on the results.

Ferric Chloride Addition Enhances Performance of Bioelectrochemical Anaerobic Digestion of Sewage Sludge at Ambient Temperature (제2철 이온을 이용한 상온조건에서 하수슬러지의 생물전기화학 혐기성소화 성능향상)

  • Feng, Qing;Song, Young-Chae;Jang, Seong-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.11
    • /
    • pp.618-626
    • /
    • 2016
  • The influence of ferric ion ($Fe^{+3}$) on bioelectrochemical anaerobic digestion for sewage sludge was explored at ambient temperature ($25^{\circ}C$). Before the addition of ferric ion, the removal of volatile solids (VS) was 65.9% and the specific methane production rate was 370 mL/L/d. After the addition of ferric ion (200 ppm) to feed sludge, the bioelectrochemical anaerobic digester was more stable in the state variables including pH, alkalinity, COD and VFAs, and the VS removal and specific methane production rate were increased to 69.8% and 396 mL/L/d, respectively. However, the methane content in biogas was slightly reduced by the addition of ferric ion, indicating that the activity of planktonic anaerobic bacteria (PAB) was more improved after the addition of ferric ion. The dominances of syntrophic bacteria (Cloacamonas) and hyrolytic bacteria (Saprospiraceae, Ottowia pentelensis) in the PAB were increased by the addition of ferric ion. The addition of ferric ion improved the performance of bioelectrochemical anaerobic digestion for sewage sludge at ambient temperature.

Characteristics of Aerobic Granular Activated Sludge According to Electron Acceptors in Sequencing Batch Reactor Process (SBR공정에서 전자수용체에 따른 호기성 입상활성슬러지의 공정별 특성)

  • Kim, I-Tae;Lee, Hee-Ja;Bae, Woo-Keun
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.5
    • /
    • pp.480-487
    • /
    • 2004
  • This study was conducted to find the effect of electron acceptors on the formation of granular sludge by using four different types of electron acceptors. The phosphorous uptake, denitrification, and sulfate reduction in anoxic modes were simultaneously occured because of the presence of the polyphosphate accumultating organism(PAO) that utilize nitrate and sulfate as an electron acceptor in the anoxic zone. Denitrirying phosphorous removal bacteria(DPB) was enriched under anaerobic/anoxic/aerobic condition with a nitrate as an electron acceptor, and desulfating phosphorous removal bacteria(DSPB) was enriched under anaerobic/anoxic/aerobic condition with a sulfate as an electron acceptor. Polyphosphate accumulating organism(PAO) were enriched in the anaerobic/aerobic SBR. PAO took up acetate faster than DPB and DSPB during the aerobic phase. The sludge with nitrate and sulfate as an electron acceptors grew as a granules which possessed high activity and good settleability. In the anaerobic/aerobic modes, typical floccular growth was observed. In the result of bench-scale experiment, simultaneous reactions of phosphorus uptake, denitrification and sulfate reduction were observed under anoxic condition with nitrate and sulfate as an electron acceptors. These results demonstrated that the anaerobic/anoxic modes with nitrate and sulfate as an electron acceptors played an important role in the formation of the sludge granulation.

Verification of Enhanced Phosphate Removal Capability in Pure Cultures of Acinetobacter calcoaceticus under Anaerobic/Aerobic Conditions in an SBR

  • Kim, Hyung-Jin;Krishna R. Pagilla
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.6
    • /
    • pp.335-339
    • /
    • 2002
  • Laboratory experiments were conducted using pure cultures of Acinetobacter under an-aerobic/aerobic cyclic conditions to explain the release and uptake of soluble phosphate in an activated sludge process showing enhanced biological phosphate removal (EBPR). Under anaerobic/aerobic cyclic conditions in a Sequencing Batch Reactor (SBR), COD uptake concurrent with soluble phosphate release by Acinetobacter was not significant during the anaerobic periods, indicating that EBPR would not be established in pure cultures. However Acinetobacter cells accumulated higher phosphate content (5.2%) in SBR than that obtained (4.3%) from batch experiments. These results suggest that Acinetobacter sp. may not follow the proposed pattern of behavior of poly-P bacteria in EBPR activated sludge Plants.

Studies on Isolation and Characterization of Anaerobic Bacteria from Gut of Holstein Cows and Korean Male Spotted Deer (꽃사슴과 Holstein 젖소의 장내 혐기성 박테리아의 분리 및 특성)

  • 박소현;이기영;안종호;장문백;김창현
    • Journal of Animal Science and Technology
    • /
    • v.48 no.1
    • /
    • pp.77-90
    • /
    • 2006
  • The purpose of this study was to isolate cellulolytic and hemicellulolytic anaerobic bacteria inhabiting from gut of ruminants and investigate their hydrolytic enzyme activities. Extracellular CMCase activities of H-strains isolated from the rumen of a Holstein dairy cow were higher than those of D- and DC- strains from the rumen and large intestine of Korean spotted deer. Most isolated bacteria utilized more efficiently Dehority's artificial medium containing starch, glucose and cellobiose (DAS) than those in Dehority's artificial medium containing cellulose only (DAC). The results of biochemical reactions and sugar fermentation indicated that the isolated bacteria belong to one of bacterial strains of Peptostreptococcus spp., Bifidobacterium spp., Prevotela ruminicola/buccae, Clostridium beijer/butyricum and Streptococcus intermedis which are not highly cellulolytic. Activities of Avicelase, xylanase, β-D-glucosidase, α-L-arabinofuranosidase and β-xylosidase of the isolated anaerobic bacteria in DAS were higher than those in DAC. In conclusion, the results indicated the higher enzyme activities of the isolated strains cultured in DAS medium were mainly caused by their specific carbohydrate utilization for enzyme production and growth rate. The highly cellulolytic bacteria were not isolated in the present experiment. Thus further research is required to investigate characteristics of gut bacteria from Korean spotted deer.

Hydrogen and Organic Acids Production by Fermentation Using Various Anaerobic Bacteria (각종 혐기성 미생물 발효에 의한 유기산 및 수소생산)

  • Kim, Mi-Sun;Yoon, Y.S.;Sim, S.J.;Park, T.H.;Lee, J.K.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.4
    • /
    • pp.321-329
    • /
    • 2002
  • Clostridium butyricum, Lactobacillus amylophillus, Lactobacillus amylovorus, Lactobacillus acidophillus, AI-9 produced hydrogen and /or organic acids using glucose, lactose and starch at the anaerobic culture conditions. Cl. butyricum NCIB 9576 evolved 1,700 ml H2/L-culture broth and accumulated butyric acid, acetic acid, propionic acid and ethanol in its culture broth when lactose was used as a carbon source during 24 hrs of fermentation. L. amylovorus ATCC 33620 accumulated lactic and acetic acids and some reducing sugars when starch was used as a carbon source without hydrogen production. Instead of starch as a carbon source, L. amylovorus ATCC 33620 produced lactic acid from algal biomass during fermentation and the acid-heat or freeze-thaw pretreatment of algal biomass accelerate the lactic acid fermentation.

Antibiotics produced by anaerobic fermentation of Streptococcus sp. An-21-1 isolated from domestic soil, Fermentation and purification of antibiotics from anaerobe (국내토양에서 분리한 혐기성 세균 Streptococcus sp. An-21-1 이 생성하는 항생물질 II. 항생물질을 생성하는 혐기성 세균의 발효 및 항생물질의 분리 정제)

  • Park, Seung-chun;Yun, Hyo-in;Oh, Tae-kwang
    • Korean Journal of Veterinary Research
    • /
    • v.33 no.1
    • /
    • pp.61-69
    • /
    • 1993
  • In order to search for new antibiotics from anaerobic bacteria, a large number of samples from domestic soil were collected and processed by apropriate methods. A potential strain, Streptococcus sp. An-21-1, was found to produce antimicrobial compounds. The Results were as follows; 1. During fermentation, the bacteria grew rapidly up to 20hr, thereafter entered the death phase. The optimal temperature and pH for the bacterial growth were $37^{\circ}C$ and pH 7.0, respectively. 2. Antibiotics were purified from culture broth by solvent extraction, silica gel column chromatography and Sepadex L.H 20 column. 3. Physicochemical properties of Ap-1 and Ap-2 were similar ; Their melting points were between $234-237^{\circ}C$. Color reactions of ninhydrin, 2,7-dichlorofluorescein, 4-dimethylaminobenzaldehyde, Dragendroffs reagent and 20% $H_2SO_4$, were positive. Therefore, we assumed that these antibiotics have amine group, immine group, alkaloid, and lipid components. These were stable to heat. UV spectrophotometry showed two peaks at 210 nm and 260 nm. From above results, we assumed these antibiotics are belong to the peptide antibiotic family.

  • PDF

Effects of Temperature in Anaerobic Nitrogen Removal Process from Piggery Waste : Activities in Ranges of Low Field-temperature (돈사폐수의 혐기성 질소제거에 있어서 온도의 영향 : 낮은 현장 온도범위에서의 활성)

  • Hwang, In-Su;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.258-263
    • /
    • 2006
  • ANAMMOX (Anaerobic ammonium oxidation) reactor, which was cultivated ANAMMOX bacteria in mesophilic condition ($35^{\circ}C$), was operated to investigate the effects of temperature. In $20{\sim}30^{\circ}C$ of operation condition, which was assumed as field-temperature, total N removal and $NH_4-N$ removal rate were declined from about 2.50 and $1.27kg\;N/{m^3}_{reactor}-day$ (0.06 and 0.03 kg N/kgVSS/day) to 1.62 and $0.41kg\;N/{m^3}_{reactor}-day$ (0.04 and 0.01 kg N/kgVSS/day), In this range of temperature, ANAMMOX had very low activities but acid fermentation bacteria and denitrifiers, which were competitors of substrates, had high activities relatively. Though operation temperature was higher than inhibition condition for two months, ANAMMOX activities could not been recovered once they were inhibited by low temperature. This fact was resulted from very slow doubling time of ANAMMOX bacteria. This study shows that maintenance device of optimal temperature is necessary required in field application of ANAMMOX.

Conversion of Organic Carbon in Food Processing Wastewater to Photosynthetic Biomass in Photo-bioreactors Using Different Light Sources

  • Suwan, Duangkamon;Chitapornpan, Sukhuma;Honda, Ryo;Chiemchaisri, Wilai;Chiemchaisri, Chart
    • Environmental Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.293-298
    • /
    • 2014
  • An anaerobic photosynthetic treatment process utilizing purple non-sulfur photosynthetic bacteria (PNSB) was applied to the recovery of organic carbon from food processing wastewater. PNSB cells, by-product from the treatment, have high nutrition such as proteins and vitamins which are a good alternative for fish feed. Effects of light source on performance of anaerobic photosynthetic process were investigated in this study. Two bench-scale photo-bioreactors were lighted with infrared light emitting diodes (LEDs) and tungsten lamps covered with infrared transmitting filter, respectively, aiming to supply infrared light for photosynthetic bacteria growth. The photo-bioreactors were operated to treat noodle-processing wastewater for 323 days. Hydraulic retention time (HRT) was set as 6 days. Organic removals in the photo-bioreactor lighted with infrared LEDs (91%-95%) was found higher than those in photo-bioreactor with tungsten lamps with filter (79%-83%). Biomass production in a 150 L bench-scale photo-bioreactor was comparable to a 8 L small-scale photo-bioreactor in previous study, due to improvement of light supply efficiency. Application of infrared LEDs could achieve higher treatment performance with advantages in energy efficiency and wavelength specifity.

Morphological Description of Three Anaerobic Ciliates Unrecorded in Korea

  • Quoc Dung Nguyen;Novia Cahyani;Mann Kyoon Shin
    • Animal Systematics, Evolution and Diversity
    • /
    • v.40 no.3
    • /
    • pp.211-220
    • /
    • 2024
  • During the surveys of ciliates from hypoxic habitats, three marine anaerobic species were found: Metopus spiculatus, M. vestitus, and Muranothrix felix. These species have not been previously recorded in South Korea and belong to the taxonomic classes Armophorea and Muranotrichea. The morphology of these species was examined by both microscopic observations of live specimens, and stained cells using protargol impregnations. Metopus spiculatus has the following characteristics: body size 80-110×25-35 ㎛ in vivo, beak-like structure at the end of preoral dome, ectosymbiotic bacteria covering cell surface, intracytoplasmic needle-shaped structures and the conspicuous tail end. Metopus vestitus has the following distinguishing characteristics: body size 95-130×25-45 ㎛ in vivo, a cone-shaped body, a covering of ectosymbiotic bacteria on its cell surface, intracytoplasmic needleshaped structures, somatic kineties arranged in 26-28 longitudinal rows, and a posterior part tapered into a tail. Muranothrix felix has the following characteristics: body size 100-130×20-30 ㎛ in vivo, elongated body with twisted neck region, bristle-like cilia protruding perpendicular to the cell margin, ectosymbiotic bacteria covering the cell surface, about 10 macronuclear nodules, and a long, stiffened caudal cilium.