• Title/Summary/Keyword: Backward Design

Search Result 397, Processing Time 0.024 seconds

Design Sensitivity Analysis of Welded Strut Joints on Vehicle Chassis Frame (샤시 프레임에 용접한 스트러트 접합부의 설계 민감도 해석)

  • 김동우;양성모;김형우;배대성
    • Journal of Welding and Joining
    • /
    • v.16 no.3
    • /
    • pp.141-147
    • /
    • 1998
  • Design sensitivity analysis of a vehicle system is an essential tool for design optimization and trade-off studies. Most optimization algorithms require the derivatives of cost and constraint function with respect to design in order to calculate the next improved design. This paper presents an efficient algorithm application for the design sensitivity analysis, using the direct differentiation method. A mounting area of suspension that welded on chassis frame is analyzed to show the validity and the efficiency of the proposed method. A mounting area of suspension that welded on chassis frame is analyzed to show the validity and the efficiency of the proposed method.

  • PDF

Electromyographic Analysis of a Uphill Propulsion of a Bicycle by Forward.Backward Pedaling (정.역구동 페달링에 따른 자전거 등판 시의 근전도 분석)

  • Shin, Eung-Soo;Kim, Hyun-Joong
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.4
    • /
    • pp.171-177
    • /
    • 2008
  • This work intends to investigate the effects of pedaling directions on the muscle actions during the bicycle's uphill propulsion. A test rig was developed that consists of a bicyle with a special planetary geartrain, a height-adjustable treadmill, a rear-wheel support and a magnetic brake. A three-dimensional motion analysis was performed for measuring kinematic characteristics of the forward backward pedaling and the electromygraphy(EMG) measurements were simultaneously performed for estimating the muscle actions of the leg. In this work, four muscles are considered including Gastrocnemius muscle(GM), Vastus lateralis(VL), Tibialis anterior(TA) and Soleus(SOL) while the uphill slope is varied from $0^{\circ}$ to $6^{\circ}$. Raw EMG signals were first processed through the root-mean-square(RMS) averaging and then ensemble curves were derived by averaging the EMG RMS envelopes over 50 consecutive cycles. Results show that both the kinemactic characteristics and the muscle actions are significantly affected by the pedaling direction. The crank speed of the forward pedaling is higher but the difference in speed is reduced as the slope is increased. The ensemble curves of the :ac signals clearly exhibit some differences in their patterns, peak values and the corresponding locations with respect to the crank angle. The peak values of most EMG signals are higher for the forward pedaling regardless of the slope magnitude. However, the averages of the EMG signals are not observed to have a similar relationship with the pedaling direction, which seems to be affected by several factors such as less experience of the participants' backward pedaling. inappropriate bicycle design for the backward pedaling. These limitations will be further considered in future work.

A Study on the Design of Prestressed Die using Flexible Tolerance Method (플렉시블 허용오차법을 이용한 예압된 금형 설계에 관한 연구)

  • Hur, K.D.;Choi, Y.;Yeo, H.T.
    • Transactions of Materials Processing
    • /
    • v.12 no.2
    • /
    • pp.116-122
    • /
    • 2003
  • In the Prestressed die design for cold working, many constraining conditions should be considered to insure the die safety and to improve the dimension accountancy products. Among the constraining conditions, yielding conditions, diameter ratios and interferences between rings are very important. . In this paper, therefore, flexible tolerance method was used in order to search the optimum values of design variables. The maximum inner pressure is used as objective function in this numerical analysis. In the design Process, it was also involved the safety factor to the yield strength of each ring by considering the allowable tensile or compressive hoop stress in each ring. The proposed technique has been applied to the die design of backward extrusion process, and it's analytical results have been compared with that of the conventional design method.

Process Sequence Design in Cold Forging of Constant Velocity Joint Housing (등속조인트 하우징의 냉간단조 공정설계)

  • 이진희;강범수;김병민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2234-2244
    • /
    • 1994
  • A process sequence of multi-operation cold forging for actual application in industry is designed with the rigid-plastic finite element method to form a constant velocity joint housing(CVJ housing). The material flow during the CVJ housing forming is axisymmetric until the final forging process for forming of ball grooves. This study treats the deformation as an axisymmetric case. The main objective of the process sequence design is to obtain preforms which satisfy the design criteria of near-net-shape product requiring less machining after forming. The process sequence design also investigates velocity distributions, effective strain distributions and forging loads, which are useful information in the real process design.

Design Sensitivity Analysis of Elasto-perfectly-plastic Structure for Stiffened Shell Structure (탄성-완전-소성 보강쉘 구조물의 설계민감도해석)

  • Jung, Jae-Joon;Lee, Tae-Hee;Lim, Jang-Keun
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.746-752
    • /
    • 2001
  • Design sensitivity analysis for nonlinear structural problems has been emerged in the last decade as a glowing area of engineering research. As a result, theoretical formulations and computational algorithms have already developed for design sensitivity of nonlinear structural problems. There is not enough research for practical nonlinear problems using multi-element, due to difficulties of implementation into FEA. Therefore, nonlinear response analysis for stiffened shell which consists of Mindlin plate and Timoshenko beam, was considered. Specially, it presents the backward-Euler method which is adopted to describe an exact yield state in the stress computation procedure. Then, design sensitivity analysis of nonlinear structures, particularly elasto-perfectly-plastic structure, is developed using direct differentiation method. The accuracy of the developed sensitivity analysis was compared with the central finite difference method. Finally, on the basis of above results, design improvement for stiffened shell is suggested.

  • PDF

PHY Frame Structure Design for M2M Direct Communications (M2M 단말간 직접통신을 위한 PHY 프레임구조 설계)

  • Oh, Changyoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.2
    • /
    • pp.20-26
    • /
    • 2013
  • We propose PHY Frame Structure for M2M direct communications in licensed frequency band. Especially, the proposed PHY Frame Structure coexists in the same licensed frequency band as currently operating cellular systems. Recently, Machine to Machine (M2M) service markets, including SmartGrid, Mobile Health, and Smart Car, are being rapidly expanded. Supporting M2M services in a specific case can waste Radio Resource in cellular systems. For example, when two M2M terminals communicating to each other are closely located, direct communication is radio resource efficient. In this paper, we set the requirement of maintaining the existing PHY frame structure in cellular systems to meet the backward compatibility. Based on this backward compatibility requirement, PHY frame structure for M2M direct communications is developed while satisfying coexistence with current operating cellular system. The proposed PHY frame structure meets backward compatibility. Accordingly, it is expected that the proposed M2M frame structure is useful for its frequency resource efficiency.

The Design of Terrestrial DMB Media Processor for Multi-Channel Audio Services (멀티채널 오디오 서비스를 위한 지상파 DMB 미디어처리기 설계)

  • Kang Kyeongok;Hong Jaegeun;Seo Jeongil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.186-193
    • /
    • 2005
  • The Terrestrial Digital Multimedia Broadcasting (T-DMB) system supplies high quality audio comparable with VCD in 7 inch display and high quality audio comparable CD at the mobile reception environment T-DMB will launch commercial service at the middle of 2005. However the bandwidth for audio data and the number of channels are restricted to 128 kbps and 2 respectively in the current T-DMB standard because of the limitation of available bandwidth for multimedia data. This Paper Proposes a novel media processor structure for providing multi-channel audio contents oyer T-DMB system allowing backward compatibility with the legacy T-DMB receiver. Furthermore. we also Propose an adaptive receiver structure to supply optimal audio contents on various speaker configuration in T-DMB receiver. To provide multi-channel audio contents allowing backward comaptilbity with the legacy T-DMB receiver, the additional data for multi-channel audio are defined as a dependent stream of main audio stream. The OD strucure for control an additional multi-channel audio elementary stream is proposed without changing the BIFS of the legacy T-DMB system.

Improvement in flow and noise performance of backward centrifugal fan by redesigning airfoil geometry (익형 형상 재설계를 통한 후향익 원심팬의 유동 및 소음성능 개선)

  • Jung, Minseung;Choi, Jinho;Ryu, Seo-Yoon;Cheong, Cheolung;Kim, Tae-hoon;Koo, Junhyo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.6
    • /
    • pp.555-565
    • /
    • 2021
  • The goal of this study is to improve flow and noise performances of existing backward-curved blade centrifugal fan system used for circulating cold air in a refrigerator freezer by optimally designing airfoil shape. The unique characteristics of the system is to drive cold airflow with two volute tongues in combination with duct system in a back side of a refrigerator without scroll housing generally used in a typical centrifugal fan system. First, flow and noise performances of existing fan system were evaluated experimentally. A P-Q curve was obtained using a fan performance tester in the flow experiment, and noise spectrum was measured in an anechoic chamber in the noise experiment. Then, flow characteristics were numerically analyzed by solving the three-dimensional unsteady Navier-Stokes equations and noise analysis was performed by solving the Ffowcs Williams and Hawkins equation with input from the flow simulation results. The validity of numerical results was confirmed by comparing them with the measured ones. Based on the verified numerical method, blade inlet and outlet angles were optimized for maximum flow rate using the two-factor central composite design of the response surface method. Finally, the flow and noise performances of a prototype manufactured with the optimum design were experimentally evaluated, which showed the improvement in flow and noise performance.

The Effect of Instruction for 'Family Life Planning' based on Backward Design on Learners' Understanding and Satisfaction (백워드 수업설계를 적용한 '가족생활 설계' 영역 수업이 학습자의 이해도 및 수업만족도에 미치는 효과)

  • Yoo, Se Jong;Lee, Yon Suk
    • Journal of Korean Home Economics Education Association
    • /
    • v.30 no.3
    • /
    • pp.43-66
    • /
    • 2018
  • The purpose of this study was to conduct the instruction for 'Family Life Planning' based on backward design and measured the learners' understanding and satisfaction for testing validity. In short, the result of this study are as follows: In this study, first of all, the students could explain significant concepts, knowledge, and principles for the planning of family life; they could interpret and apply them; they have perspectives on them; they could empathize them; and they could have self-knowledge. The students could also accomplish high achievements for important concepts related to the field of family life planning. In conclusion, this study showed that the developed instruction was very effective for the students to achieve fruitful results, accelerating the learners' persistent understanding. Second, the learners had high satisfaction on the instruction of Family Life Planning based on backward design with the average score of 3.68 out of the perfect score 4. The students could be satisfied with the developed instruction since they could have high interest in the class thanks to diverse learning materials, and they could take an active part in the learning tasks based on group activities and questions. Also they could apply the contents that they learned through task performances to new situation and context. Therefore, this study proved that the developed instruction enhanced the learners' satisfaction on class.

OPTIMAL PREFORM DESGIN BY TRACING THE MATERIAL FLOW : APPLICATION TO PISTON FORGING

  • Hong J.T.;Lee S.R.;Park C.H.;Yang D.Y.;Chung W.J.;Park Y.B.;Kim Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.143-146
    • /
    • 2003
  • In this paper, a new preform design method is proposed to eliminate the excessive flash in metal forging process. After carrying out finite element simulation of the process with an initial billet, backward particle tracing is performed from the outlet of the flash. Then, the region which belongs to the flash is easily found .. The process is analyzed again with the redesigned billet which is removed that region the above mentioned region. The optimal preform shape which minimizes the amount of flash without changing the forgibility can be obtained in several iterations.

  • PDF